
Department of Computer Science
Series of Publications A

Report A-2013-2

Probabilistic,
Information-Theoretic

Models for Etymological Alignment

Hannes Wettig

To be presented, with permission of the
Faculty of Science of the University of Helsinki,

for public criticism
in Auditorium XIV of the University Main Building,

on February 9th 2013 at 12 o’clock noon.

University of Helsinki
Finland

Supervisor
Petri Myllymäki and Roman Yangarber,
University of Helsinki, Finland

Pre-examiners
Steven de Rooij,
Centrum Wiskunde & Informatica (CWI), Amsterdam, Netherlands
Timo Honkela,
Aalto University School of Science, Finland

Opponent
Erik Aurell,
Skolan för dataveteskap och kommunikation (KTH), Sweden
and Helsinki University of Technology (TKK), Finland

Custos
Petri Myllymäki
University of Helsinki, Finland

Contact information

Department of Computer Science
P.O. Box 68 (Gustaf Hällströmin katu 2b)
FI-00014 University of Helsinki
Finland

Email address: postmaster@cs.helsinki.fi
URL: http://www.cs.helsinki.fi/
Telephone: +358 9 1911, telefax: +358 9 191 51120

Copyright c© 2013 Hannes Wettig
ISSN 1238-8645
ISBN 978-952-8588-8 (paperback)
ISBN 978-952-8589-5 (PDF)
Computing Reviews (1998) Classification: G.3, H.1.1, I.2.6, I.2.7
Helsinki 2013
Helsinki University Print

Probabilistic, Information-Theoretic Models for
Etymological Alignment

Hannes Wettig

Department of Computer Science
P.O. Box 68, FI-00014 University of Helsinki, Finland
wettig@hiit.fi

PhD Thesis, Series of Publications A, Report A-2013-2
Helsinki, January 2013, 202 pages
ISSN 1238-8645
ISBN 978-952-8588-8 (paperback)
ISBN 978-952-8589-5 (PDF)

Abstract

This thesis starts out by reviewing Bayesian reasoning and Bayesian net-
work models. We present results related to discriminative learning of
Bayesian network parameters. Along the way, we explicitly identify a num-
ber of problems arising in Bayesian model class selection. This leads us to
information theory and, more specifically, the minimum description length
(MDL) principle. We look at its theoretic foundations and practical impli-
cations. The MDL approach provides elegant solutions for the problem of
model class selection and enables us to objectively compare any set of mod-
els, regardless of their parametric structure. Finally, we apply these meth-
ods to problems arising in computational etymology. We develop model
families for the task of sound-by-sound alignment across kindred languages.
Fed with linguistic data in the form of cognate sets, our methods provide
information about the correspondence of sounds, as well as the history and
ancestral structure of a language family. As a running example we take the
family of Uralic languages.

Computing Reviews (1998) Categories and Subject
Descriptors:
G.3 [Mathematics of Computing] Probability and Statistics.
H.1.1 [Information Systems] Models and Principles

— Systems and Information Theory.
I.2.6 [Computing Methodologies] Artificial Intelligence

— Learning.

iii

iv

I.2.7 [Computing Methodologies] Artificial Intelligence
— Natural Language Processing.

General Terms:
Data Analysis, Probabilistic Modeling, Information Theory, Natural
Language Processing.

Additional Key Words and Phrases:
Bayesian Networks, Logistic Regression, Minimum Description Length
Principle, Kolmogorov Complexity, Normalized Maximum Likelihood,
Etymology, Language Alignment, Phylogenetic Trees.

Foreword

v

vi

Contents

Foreword v

List of Included Publications 1

List of Abbreviations 3

1 Introduction 5

2 Bayesian Reasoning 13

2.1 Bayes’ Rule . 13

2.2 Marginal Likelihood . 17

2.3 Bayesian Network Models 20

2.4 Bayesian Model Class Selection 26

2.5 Supervised Learning Tasks 33

2.6 Discriminative Parameter Learning 36

2.7 Empirical Evaluation . 43

2.8 Summary . 47

3 Information Theory 49

3.1 The Minimum Description Length Principle 49

3.2 Two-Part Codes . 55

3.3 Kolmogorov Complexity . 61

3.4 Normalized Maximum Likelihood 66

3.5 More Properties of the NML Distribution 70

3.6 Computing the NML Distribution 73

3.7 Summary . 76

4 Etymology 77

4.1 Motivation . 77

4.2 The Data . 81

4.3 The Alignment Problem . 84

vii

viii Contents

4.4 Baseline Model and Extensions 87
4.4.1 Baseline Model . 87
4.4.2 Learning Procedure 88
4.4.3 Sanity Checking . 90
4.4.4 NML . 91
4.4.5 Codebook . 91
4.4.6 Distinguishing Between Kinds of Events 93
4.4.7 Multiple Sound Alignment 93
4.4.8 Separate Encoding of Affixes 95
4.4.9 Multilingual Alignment 97

4.5 Featurewise Context Modeling 99
4.5.1 Larger Context . 99
4.5.2 Phonetic Features 99
4.5.3 Context Trees . 100
4.5.4 Codelength . 102
4.5.5 Learning . 103
4.5.6 Evaluation . 104
4.5.7 Exploiting Monolingual Rules 105

4.6 Imputation . 107
4.7 Phylogenetic Language Trees 109

5 Summary and Current Work 113

References 119

Original Publications 131
Summary and Contributions . 131
Publication I: When Discriminative Learning of Bayesian Net-

work Parameters is Easy 135
Publication II: Calculating the Normalized Maximum Likelihood

Distribution for Bayesian Forests 143
Publication III: Probabilistic Models for Alignment of Etymologi-

cal Data . 155
Publication IV: MDL-based Models for Alignment of Etymological

Data . 165
Publication V: Using context and phonetic features in models of

etymological sound change 175
Publication VI: Information-Theoretic Methods for Analysis and

Inference in Etymology . 187

List of Included Publications

Publication I H.Wettig, P. Grünwald, T.Roos, P. Myllymäki, H.Tirri:
When Discriminative Learning of Bayesian Network Parameters Is Easy
18th International Joint Conference on Artificial Intelligence (IJCAI ’03).

Publication II H. Wettig, P. Kontkanen and P. Myllymäki:
Calculating the Normalized Maximum Likelihood Distribution for Bayesian
Forests
IADIS International Journal on Computer Science and Information Sys-
tems 2 (2007).

Publication III H. Wettig and R. Yangarber:
Probabilistic Models for Aligning Etymological Data
18th Nordic Conference of Computational Linguistics (NODALIDA 2011).

Publication IV H. Wettig, S. Hiltunen and R. Yangarber:
MDL-based Models for Aligning Etymological Data
Conf. on Recent Advances in Natural Language Processing (RANLP 2011).

Publication V H. Wettig, K. Reshetnikov and R. Yangarber:
Using context and phonetic features in models of etymological sound change
EACL Joint Workshop of LINGVIS & UNCLH 2012.

Publication VI H. Wettig, J. Nouri, K. Reshetnikov and R. Yangarber
Information-Theoretic Methods for Analysis and Inference in Etymology
Fifth Workshop on Information Theoretic Methods in Science and Engi-
neering (WITMSE 2012).

For detailed references, summaries and contributions of the current author
see pages 131–133.

2

List of Abbreviations

AIC Akaike Information Criterion

BIC Bayesian Information Criterion

DAG Directed Acyclic Graph

ESS Equivalent Sample Size;
the parameter prior for Bayesian network models,
which spreads pseudo-counts evenly across the data space

FAN Forest-Augmented Naive Bayes

fNML factorized Normalized Maximum Likelihood

i.i.d. independent and identically distributed;
the assumption, that data come from a stationary distribution,
from which we repeatedly draw independent samples

KL KL-divergence: Kullback-Leibler divergence

LR Logistic Regression

MAP Maximum A Posteriori;
the model of maximal posterior probability

MB Markov Blanket

MDL Minimum Description Length

MarLi Marginal Likelihood

3

ML Maximum Likelihood

NB Naive Bayes

NCD Normalized Compression Distance

NED Normalized Edit Distance

nfp(C) Number of Free Parameters (of a model class C)

NML Normalized Maximum Likelihood

PCB Prefix CodeBook

SCB Suffix CodeBook

sNML sequential Normalized Maximum Likelihood

TAN Tree-Augmented Naive Bayes

UPGMA Unweighted Pair Group Method with Arithmetic Mean

UTM Universal Turing Machine

XIC Information Criteria such as AIC, BIC and so on

4

Chapter 1

Introduction

“Essentially, the world is probabilistic.”

’Data modeling’ is a term which, in all its generality, applies to the
subject of this thesis. It means that, given some data, we learn a machine
that describes the data in a generalizing manner. This machine, or model,
may then reveal properties of the data not immediately evident and can
be used for inference—prediction of entities that are not given, but are
assumed to come from the same generating process.

Another—even more general—term frequently used in this context is
’data mining’. Nowadays, data can be collected automatically, cheaply
and therefore in large amounts, hoping it will be useful in some way, some
day. This calls for methods to process this data. Wikipedia states that “the
overall goal of the data mining process is to extract information from a data
set and transform it into an understandable structure for further use”. This
is exactly what we will be doing with etymological data in Chapter 4 of
this work, but of course this requires specification. Data mining as such
simply means “to do something interesting with data”.

Data modeling, as opposed to data mining, includes the notion of a
model, a machine to describe the data. Hence, in data modeling, we need
to have an idea of what it is that we expect—or hope—to find in the data.
Instead of simply scanning for conspicuous statistics, we have a model to
describe the entire data, a simulated process to encode or generate it. The
choice of an appropriate model is naturally guided by the data at hand, but
also requires some initial understanding of the process that has generated
the data. For any given data, multiple such choices may seem reasonable,
which calls for an objective means of model (class) selection.

All interesting modeling problems involve uncertainty. It is of no prac-

5

6 1 Introduction

tical relevance, whether the data truly come from a random process, or
whether the model itself introduces uncertainty through generalization. In
fact, it is a philosophical question whether true randomness exists in the
first place. But whether a process is random by nature or whether we are
simply unaware of the underlying determinism, in either case we need to
deal with uncertainty in modeling it.

Mathematical probability is a natural means to describe—and process—
this uncertainty. Our approach will be, still very generally speaking, that of
probabilistic data modeling. Although the term ’probability’ is being used
in many different ways, all of them describe a measure of belief and uncer-
tainty. Subjectivists, for instance, use probabilities simply to describe their
personal, subjective view on things. Frequentists in turn regard probabili-
ties as relative frequencies of repeatable random events. Bayesians combine
the two by first defining a prior, a subjective view on what to expect be-
fore observing any data, and then augmenting it with the observed data
frequencies to form the posterior. The posterior is the (Bayesian) belief
of what the data-generating distribution most probably looks like, after
having seen the data. This distribution can then be used to predict unob-
served data entities, such as future data. The posterior depends on both
the initial belief as described by the prior, and the given training data. In
information theory, the probability of some data is considered to be two-
to-the-minus number of bits needed to describe that data unambiguously,
possibly subject to normalization.

We consider classes of parametric models. A model class C is thus a set of
models (probability distributions or densities) sharing the same parametric
form, a model M = C(Θ) is defined by the model class C it belongs to,
together with a parameter vector Θ specifying a distribution (or density)
from this class.

In model class selection problems we also speak of a model family F . By
this we mean a collection of model classes, from which we want to choose a
suitable one, guided by the given data. For example, we may start out with
the model family of all polynomials of finite degree. A model class Cn would
then include all polynomials of given degree n and a model would become a
polynomial anx

n+an−1x
n−1+. . .+a1x+a0 with given coefficients ai. But a

model family need not be nested like this. It may also, for instance, be the
set of possible Bayesian networks—directed acyclic graphs on a given set
of variables that encode independence assumptions of the corresponding
models. More generally, a model family may be any collection of model
classes, which can be of numerous types and structures.

How is the model in the above example probabilistic? In general, to fit

7

data of size n exactly we need a polynomial of degree n−1, therefore there
will be one parameter (coefficient) for each data item. This leads to sharply
oscillating functions which are not well-suited to make predictions about
areas inbetween data points. This can easily be seen by removing some
data point and fitting a polynomial of degree n− 2. Typically, the value of
this polynomial at the position of the removed data will greatly differ from
the held-out value. Similarly, when fitting a polynomial of degree n − 1,
the coefficient values are highly sensitive to noise, such as measurement
inaccuracy. Since we have not actually simplified the data, but merely
rewrote the n data points as n coefficients, the model does not generalize.

For this reason we hardly ever aim to model the data exactly, overly
complex models generalize poorly. We need to choose a model class that
truly simplifies the data, which typically means fitting it imperfectly. We
then determine the model parameters (here: the coefficients of the poly-
nomial) according to some objective function, e.g. goodness of fit. For
polynomial fit, we often minimize the sum of squares of the residuals. Im-
plicitly, we thereby assume the data to be normally distributed around
the point indicated by the polynomial. Explicitly or implicitly, the model
M = Cn(Θ = (a, σ2)) includes a variance parameter σ2, to define a condi-
tional probability distribution P (y|x,M), a normal distribution of variance
σ2 with its mean given by the polynomial with coefficients a evaluated at
x.

Comfortably, all data appearing in the course of this work are of discrete
nature, all distributions will be multinomial. This simplifies many things.
The parameters of the Bayesian classifiers of Chapter 2 are specified by
local counts, priors take on a similar form, and the parametric complexity
of a class of Bayesian forest models in Chapter 3 is guaranteed to be finite.
Probabilities sum—rather than integrate—to one and form a distribution
directly, without the need to specify the precision to which the data is being
modeled. The only probability densities that appear are those that apply
to (continuous) model parameters.

The course of this work roughly follows the topics of the six included
publications, referred to as Publications I–VI. However, we draw a larger
picture, filling in gaps between the publications and giving motivation step-
by-step. This thesis tells a story, a thread of the author’s work in research,
of which the attached publications only represent some aspects. The body
of this thesis is meant to be as intuitive—easy to read—as possible, while
still making all the points that seem essential and explaining all concepts
that are relevant from the point of view of understanding the contents of
this work. There is a tradeoff in writing, between complexity and being

8 1 Introduction

comprehensive, much like the tradeoff between complexity and data fit in
the modeling and coding problems appearing in this work. But in writing,
complexity is not measured in number of free parameters, nor in number of
bits or words, but more subjectively by how well the author’s wife manages
to follow.

Chapter 2 introduces the reader to Bayesian reasoning and the related
topic of Bayesian network models. This probabilistic framework can be
seen as the foundation of modern probability theory and is appealing in
many ways. As it separates subjective beliefs—the prior—from learned
probability ratios in an explicit way, the data analyst is forced to formulate
his or her expectations clearly.

There are also some drawbacks to this approach, which we explicitly
identify. For one, Bayesian network models are not well-suited for super-
vised, discriminative learning tasks such as classification. Publication I
gives theoretical evidence, and Section 2.7 provides empirical backup for
this claim.

Secondly, the formulation of a reasonable prior can be quite challenging
indeed, as subjective belief hardly ever translates into a prior (on the model
parameters) directly. When we fix a model class that is simple with respect
to the data size, then in many cases this prior has little influence on the
posterior, as the sheer amount of data causes the learned probability ratio
to outweigh it. However, the situation becomes very different when we want
to perform model class selection. As the complexity of the most suitable
model class can be seen to be a function of the data size, there seems to
never be ’a sufficient amount’ of data available. It has been shown that in
many cases the choice of the most suitable model class by Bayesian means
greatly depends on the chosen prior [Silander 2007].

Finally, model class selection not only depends on the prior chosen for
the model parameters, but we also need to formulate a prior distribution
over the model classes under consideration. As rule of thumb, more com-
plex models should be less likely a priori, in order to prevent the learning
algorithm from overfitting the training data, which would result in poor
generalization capability.

The standard Bayesian approach to model class selection is the use of
Bayes factors [Berger 1985], which enable us to compare model classes ac-
cording to the probability they assign to the given data. In hypothesis
testing these are simply likelihood ratios, the Bayes factor tells how much
more likely a hypothesis has become by influence of the observed data.
This does not solve the problem of defining a prior distribution over the
hypotheses to choose from, but it does separate this issue from the in-

9

ference problem. But for the model class selection problem it gets more
complicated. The Bayes factor is now the average probability assigned to
the data by all models in the class, a weighted sum or integral over the
respective parameter spaces. Averaging requires a (parameter) prior to av-
erage with respect to, which has strong influence on the selection that is
made. There is some sort of automatic complexity penalty built in to this
approach, as a larger (e.g. higher-dimensional) parameter space decreases
the likelihood average, given that its mass is concentrated in a small area.
In practice, however, this alone cannot entirely prevent overfitting (poor
generalization).

Another way of dealing with the situation in which we choose among
model classes of differing complexity is to add a complexity penalty term
to the objective. This leads to the so-called information criteria, such as
the Akaike Information criterion (AIC, [Akaike 1974]), the Bayesian Infor-
mation Criterion (BIC, [Schwarz 1978]) and so on. These penalty terms
however, typically amount to counting the free parameters of a model, pre-
ceded by some weight. This is not necessarily a good measure of complexity,
especially when comparing model classes of different nature.

An entirely different solution to these problems offers the Minimum
description Length (MDL) principle, which brings us to Chapter 3. We
employ Kraft’s inequality to regard the probability of any data as the two-
to-the-minus number of bits needed to decodably encode it—the shorter the
code, the higher the probability. This information theoretic paradigm has
its roots in Kolmogorov theory [Kolmogorov 1965, Li 1997]. Kolmogorov
Complexity—the length of the shortest input to a universal Turing machine
to produce a given string and halt—is, in a very specific theoretic way, the
optimal way to define this codelength, which then translates into probabil-
ities. Unfortunately, it has been proven to be incomputable [Li 1997].

MDL methods computably approximate the Kolmogorov complexity.
The simplest way of achieving this are the so-called two-part codes. We first
encode the model we want to use, and subsequently the data by means of
this model. Encoding in this context simply means describing in a compact
manner such that the original—model or data—can be recovered from this
description. While the length of the first part of this description can also be
seen as a complexity penalty term much like that of the information criteria
mentioned above, in most cases this ’prior’ can be formulated in an easy,
natural and intuitive way. At the same time, the decodability requirement
acts as a constant sanity check, making the researcher’s life much easier.

But often we can do better than to use two-part codes. Normalized
Maximum Likelihood (NML, [Shtarkov 1987, Rissanen 1987]) is a one-part

10 1 Introduction

code, defining a distribution over all possible data of given structure and
size, with respect to a chosen model class directly. It does not involve any
prior or model codelength and can—where it exists and computation is
feasible—be used to compare model classes of utterly different structures.
NML minimizes the worst-case regret, the additional description length as
compared to the best model in the class that we could have chosen only
with hindsight. Under the assumption that the data come from a universal
distribution in the Kolmogorov sense as discussed in Section 3.3, this implies
average-case minimal description length. Of course, such assumption may
well be questioned. But in most cases, assuming a universal distribution
is closer to the truth than any prior distribution we are able to guess (and
formulate).

The fundamental problems with NML are issues of its efficient com-
putability. While two-part codes are—in many cases—easy to compute,
and Kolmogorov Complexity cannot be computed at all, NML lies some-
where inbetween. It is superior to, but harder to compute than two-part
codes, and inferior to Kolmogorov Complexity but in exchange computable.
For some simple model classes it is also efficiently computable. Publication
II investigates efficient computation of the NML distribution for a family
of Bayesian network models, the so-called Bayesian forests. Since the NML
distribution has many desirable properties, we want to be able to employ
it in as many cases as possible, which makes NML computability issues an
interesting topic for the scientific community.

MDL, both in the form of a two-part code and using NML, has been suc-
cessfully applied to a wide range of practical applications. These include—
but are not limited to—histogram density estimation [Kontkanen 2007b],
image denoising [Roos 2005a], clustering [Kontkanen 2006] and DNA se-
quence compression [Korodi 2005].

In the work presented in this thesis, we have added etymology to this
list, the study of the history of words. Specifically, we have developed mod-
els for the problem of etymological alignment , which we use to investigate
processes of phonetic sound change in natural languages. Probabilistic and
information-theoretic methods have previously been applied in many areas
of linguistics, including morphology [Creutz 2007], syntax [Stolcke 1994]
and topic modeling [Blei 2003]. In recent years we have also seen a new in-
terest in computational historical linguistics, as phylogenetic methods have
been transferred from evolutionary biology onto this field [Greenhill 2009].
Our MDL approach models etymological data on the level of single sounds,
but may also be used to infer language phylogenies.

Chapter 4, as well as the attached Publications III–VI, present MDL

11

methods for the analysis of etymological data, which comes to us in the
form of cognate sets, collections of related words from a family of kindred
natural languages. Our methods can be applied to any such data. As
a running example in this work we use the StarLing Data on the Uralic
language family. While Chapters 2 and 3 give us theoretic foundation for
these methods, Chapter 4 is the application part of this thesis.

Being interested in the changing of sounds across languages, we must
align words from different languages to obtain information on which sym-
bols or sounds do in fact correspond. Our models provide such alignment
in an automated fashion and generate rules of phonetic change that are
valid throughout a set of languages. We also use the models and induced
alignments to build phylogenetic trees, depicting the inferred history of
language separation within the family. This approach is not only an inter-
esting, novel application of MDL, but also offers new insight to linguists
working in the field. The corresponding software is currently being made
publicly available for anyone to use on their favourite language family and
will appear on the project homepage at etymon.cs.helsinki.fi.

Chapter 5 provides a summary of this work, draws conclusions and dis-
cusses directions of current and future research. Following the references,
there is a brief summary of the included publications, indicating the con-
tributions of the current author. Reprints of these publications are to be
found at the very end of this book.

12 1 Introduction

Chapter 2

Bayesian Reasoning

“All models are wrong, but some are Bayesian.”

Bayesian reasoning has got its name from the English mathematician
(and Presbyterian minister) Thomas Bayes (1701–1761), who formulated
what was to become known as Bayes’ Rule as a solution to a problem of
’inverse probability’. Bayes’ Theorem in turn, a generalized version of
this result, is being accounted to Pierre-Simon Laplace (1749–1827). But
it was not until about 1950 that the term Bayesian has come into use,
and only in the 1980s have Bayesian methods begun to spread. There
are a number of good books on the subject, such as [Berger 1985] and
[Bernardo 1994], to name only a couple.

2.1 Bayes’ Rule

Bayes’ Rule is the central foundation of Bayesian reasoning. It is a direct
consequence of the chain rule of probabilities which states that the
joint probability of a set of random variables can be written as a chain of
conditional probabilities.

Rule 1 (Chain Rule) For a set A = {A1, . . . , AM} of random variables
Ai, their joint probability can be rewritten as

P (A) = P (A1)P (A2|A1) · · ·P (AM |A1, . . . , AM−1)

=
M∏

i=1

P (Ai|A1, . . . , Ai−1). (2.1)

13

14 2 Bayesian Reasoning

The same is true for any set A = {A1, . . . , AM} of events with corre-
sponding probabilities P (Ai).

Throughout this thesis we will use boldfaced symbols to denote sets,
vectors or matrices and thereby visually separate them from single numbers
or entities.

Since A is an unordered set, we are free to renumber the Ai, change
the ordering, and thus for random variables A and B we can write

P (A,B) = P (A)P (B|A) = P (B)P (A|B). (2.2)

In MDL, where we encode events (or random variables) A and B—or a
larger set A—this simply means that we may do so in any order we choose.
Bayesians use the above to invert probabilities. This is Bayes’ Rule, which
is most frequently encountered in the following shape.

Rule 2 (Bayes’ Rule) For any event A, and an event B with non-zero
probability P (B), we have

P (A|B) =
P (B|A)

P (B)
P (A). (2.3)

This observation can be utilized in various ways. For one, it couples
the probability of a model M given data D to its reverse—the likelihood
of D under M:

P (M|D) =
P (D|M)

P (D)
p(M), (2.4)

and further, as P (D) is independent of M,

P (M|D) ∝ P (D|M)p(M). (2.5)

That is, the conditional probability of model M given data D is propor-
tional to the likelihood of D under M times the prior probability of M,
which we choose to visually separate from all other probabilities by us-
ing a lower case p. An easy—but problematic—choice for this prior is the
so-called uniform prior p(M) ∝ 1. In case there either are no known pref-
erences on the set of modelsM∈ C, or these preferences cannot be formu-
lated as a prior distribution, this is sometimes seen as the non-informative

2.1 Bayes’ Rule 15

choice, as it means ’to me any model is—a priori—as good as any other’.
Under the uniform prior (2.5) simplifies to

P (M|D) ∝ P (D|M), (2.6)

that is, the probability of a modelM given data D is directly proportional
to the probability it assigns to that data.

But the models of a class are indexed by a set of parameters, and thus
the chosen prior is also a distribution over the parameters of a model.
Therefore, ’the uniform prior’ can be uniform only with respect to a chosen
parametrization. A solution to this problem was offered by [Jeffreys 1946],
and Jeffreys’ prior is often regarded to be truly non-informative. In any
case, in Bayesian reasoning there is no way around the formulation of a
prior, for without it there can be no posterior, the probability of a model
M given data D.

It is important to note that the prior has to be given before any data
has been observed. The frequently used term ’data prior’ is a contradiction
in terms; using the same data to formulate a prior and to calculate the
posterior from it is circular reasoning.

With a uniform prior, the posterior is proportional to the likelihood of
D under M:

P (M|D) ∝ P (D|M). (2.7)

So what does this mean? Under the assumption that our data come
from a distribution which lies within our chosen model class C, when we
have specified a prior distribution over all models M ∈ C, this gives us a
posterior distribution over all models, consisting of probabilities for each
M to be the one that generated D. This posterior combines our prior belief
with the evidence that the data provide. We play the so-called prior-to-
posterior game, where the data likelihood transforms the prior into a
posterior distribution over the models in the class under consideration.

Under the frequentist assumption of independent, identically distributed
(i.i.d.) data from a random source, it can be shown that in this way—
given that our prior assigns non-zero probability to the correct model—
we will, with increasing data size, eventually find it, or approximate it to
arbitrary precision. Moreover, if the generating distribution lies outside
of the model class under consideration, we still minimize the Kullback-
Leibler Divergence between the true and the estimated distributions in
the limit [Gelman 1995]. In both cases, the actual prior chosen is irrelevant,
as the data likelihood overrides it when we throw an unlimited amount of
data at the model.

16 2 Bayesian Reasoning

However, it is questionable whether a ’true distribution’ needs to exist
at all. On one occasion the author had the pleasure to witness, Jorma
Rissanen illustrated this point by drawing a number of chalk dots on the
blackboard, then asking the audience which distribution they assessed these
had come from. Furthermore, in-the-limit results are of little use in prac-
tical applications with limited data availability. They can act as a sanity
check, as any method should at least consistent, i.e., find the optimal model
in case data availability is not an issue. But for data of limited size the
prior can play an important role, and its formulation is not an easy task.

In this context, one often hears George E. P. Box’s famous quote ’all
models are wrong, but some are useful’ [Box 1979], which is of course hard
to disagree with. In the following, we will keep a close eye on the aspect of
usefulness.

2.2 Marginal Likelihood 17

2.2 Marginal Likelihood

It has been noted, that the most probable model in a model class, the max-
imum a posteriori (MAP) model, is not the most suitable—or useful—for
the task of prediction. Take as an example the data to be a single toss of
a biased coin. The corresponding model class C is the set of Bernoulli
models, indexed by the single free parameter Θ, defining the probability of
heads facing up. Assuming a uniform prior over the values of Θ ∈ [0, 1], the
MAP model will then be eitherM = C(Θ = 0) orM = C(Θ = 1), depend-
ing on whether we observe tails or heads. Using this model for prediction
of the second toss would mean giving probability one to the outcome being
the same as the first. Clearly, this does not reflect any belief we could
reasonably argue.

Instead, when predicting, we can use all models in the class, integrating
over all parameters/models. For an i.i.d. sample D = {d1, . . . , dn}, the
marginal likelihood (MarLi, see, e.g. [MacKay 2002]) is given by

P (D|C) =

∫

Θ
P (D|M = C(Θ))p(M = C(Θ))dΘ. (2.8)

Whenever C is fixed, we may drop it from the notation and simply write

P (D) =

∫

Θ
P (D|Θ)p(Θ)dΘ. (2.9)

For the binomial distribution, conjugate priors are given by a Beta
distribution, and, for multinomial distributions over more than two val-
ues, by its generalized form, the Dirichlet distribution, see [MacKay 2002].
By conjugate we mean that the prior and the posterior distributions are
of the same form. Therefore, we can play the prior-to-posterior game any
number of times and include more data into the posterior as it arrives. By
the chain rule (Rule 1), the posterior is invariant to the split and ordering
by which we add data:

P (Θ,D = {D1,D2}) = P (D1,D2|Θ)p(Θ)
i.i.d.
= P (D1|Θ)P (D2|Θ)p(Θ)

= P (D2|Θ)P (Θ,D1) = P (D1|Θ)P (Θ,D2). (2.10)

Also, for the posterior we have

P (Θ|Di) ∝ P (Θ|Di)P (Di) = P (Θ,Di) (2.11)

since the data probability P (Di) is constant wrt. the chosen model.

18 2 Bayesian Reasoning

For conjugate priors, where the posterior P (Θ|D1) is of the same form
as the prior p(Θ), we can therefore regard it as a new prior before observing
the second batch D2. For multinomial distributions, when we choose a
Dirichlet prior, we always remain within the world of Dirichlet distributions.

The prior p, which is uniform with respect to the standard parametriza-
tion of a multinomial distribution, is conjugate and given by

p ∼ Dir(1, . . . , 1). (2.12)

In the above coin tossing example, the uniform (flat) prior therefore is

p(Θ, 1−Θ) ∼ Dir(αheads, αtails) = Dir(1, 1) (2.13)

and the marginal likelihood solves to

P (D) =
c(heads)!c(tails)!

(c(heads) + c(tails) + 1)!
, (2.14)

where c(heads) and c(tails) are the counts observed in D.
Prediction of the next sample dn+1 turning up heads becomes (with

αheads = αtails = 1)

P (dn+1 = heads|D) =
P (D, dn+1 = heads)

P (D)

=
(c(heads) + c(tails) + 1)! c(heads+ 1)! c(tails)!

(c(heads) + c(tails) + 2)! c(heads)! c(tails)!

=
c(heads) + 1

c(heads) + c(tails) + 2
, (2.15)

and thereby the probability of seeing the same outcome a second time, after
having observed just one toss of the biased coin, under the uniform prior
becomes 2

3 .
In general for a K-valued multinomial, taking on values in {1, . . . ,K},

assuming any Dirichlet prior α ∼ Dir(α1, . . . , αK) the marginal likelihood
has the following form [Heckerman 1995].

P (D) =

∫

Θ
P (D|Θ)p(Θ)dΘ =

∏
k Γ(c(k) + αk)

Γ(
∑

k(c(k) + αk))

Γ(
∑

k αk)∏
k Γ(αk)

(2.16)

Here, the c(k) are the observed counts of each value k in D, and Γ is the
gamma function.

Prediction of an unobserved value d takes on the following simple form:

2.2 Marginal Likelihood 19

P (d = k|D) = P (d = k|c) =
c(k) + αk∑
k(c(k) + αk)

. (2.17)

This takes on the same form as the MAP model or, in fact, any model
in the class of multinomials. Therefore, we can speak of the marginal
likelihood model, which emulates the use of all models in the class. While
the parameters of the MAP model are just the observed relative frequencies,
the parameters of the marginal likelihood (MarLi) model are the relative
augmented frequencies, to which we have added the pseudo-counts given
by the Dirichlet prior. The count vector c completely (and minimally)
determines both MAP and MarLi models.

But marginal likelihood is not only a tool for prediction. Without it, the
data likelihood P (D|C)—given just the model class with no parameters—
is undefined and meaningless. The Bayesian answer is to integrate over
all possible parameters, weighted by their prior probability. If these prior
probabilities are conjugate, i.e. in the case of multinomials follow a Dirichlet
distribution, then this can be done elegantly and efficiently. Now we can,
by Bayes’ rule, also calculate the reverse—P (C|D)—the probability that
the data has been generated by a modelM∈ C, as we shall further explore
in Section 2.4.

Remark 1 (on prequential probability)
The marginal likelihood for multinomial distributions as given by Equa-
tion 2.16 can also be seen as the prequential (for ’predictive sequential’
[Dawid 1984]) probability. The rationale goes as follows. We interpret the
Dirichlet prior as pseudo-counts, e.g. for the uniform prior we pretend that
we have seen one of each kind in advance. For a data set of size n we then
play the prior-to-posterior game n times. For example, for a series of n
coin tosses d1, . . . , dn consisting of c(heads) heads and c(tails) tails, the
first outcome will always get probability 1

2 , the second either 1
3 or 2

3 , as we
have added the first toss to the pseudo-counts, and so on.

If we order the series heads first, tails last, the sequence of probabilities
P (dj |d1, . . . , dj−1) becomes

1

2
,
2

3
, . . . ,

c(heads)

c(heads) + 1
,

1

c(heads) + 2
, . . . ,

c(tails)

c(tails) + c(heads) + 1

and the probability of the complete sequence—the product of the above terms—
is given by Equation 2.14. Reordering the sequence only permutes the enu-
merators, and thus leaves the product unchanged. Therefore the marginal
likelihood can be interpreted as the product of the sequence of predictive
probabilities P (dj |d1, . . . , dj−1).

20 2 Bayesian Reasoning

2.3 Bayesian Network Models

So far we have dealt only with a single multinomial variable. The situation
gets more interesting, when there are multiple, potentially interdependent
variables involved. Suppose that data D consists ofmmultinomial variables
X = {X1, . . . , Xm}, where each Xi can take on values in {1, . . . ,Ki}. Then
by the chain rule their joint probability distribution is given by a product
of conditional probability distributions

P (X) =

m∏

i=1

P (Xi|X1, . . . , Xi−1), (2.18)

where of course we are free to choose the ordering of the Xi.
Each such conditional probability distribution P (Xi|X1, . . . , Xi−1) is

represented by a table of size
∏i
i′=1Ki′ listing the single probabilities

P (Xi = xi|X1 = x1, . . . , Xi−1 = xi−1), which are the parameters of the
corresponding model. This easily becomes a large number of parameters.
Counting the free parameters, for the joint distribution (2.18) we get an
overall number of

∏m
i=1Ki − 1. When data availability is limited—as it

tends to be—already for a very moderate amount of variables there clearly
is too little support for each parameter; the full model is overly complex
and we need to simplify it.

Bayesians do so by introducing independence assumptions. Each
conditional probability distribution is approximated by a distribution con-
ditioned only on a subset Pa(i) ⊆ {X1, . . . , Xi−1} of the preceding vari-
ables, such that we have

PB(X) =

m∏

i=1

P (Xi|PaBi). (2.19)

These independence assumptions can then be depicted in a Bayesian Net-
work B—which we have included in the above equation as an index— such
that PaBi is the parent set of Xi in B. As the network B completely defines
the parametric structure of the associated model class CB we can identify
the two. To simplify notation, in the following we may write B in place of
CB—e.g., B ∈ F in model class selection— B(Θ) instead of CB(Θ) for the
instantiated model, and so on.

More formally, a Bayesian Network is a directed acyclic graph (DAG)
on the relevant variables of a problem which is interpreted as in Equa-
tion 2.19. Acyclicity ensures that—after suitably reordering the variables
Xi—we indeed have Pai ⊆ {X1, . . . , Xi−1} for all i [Pearl 1988], such that
there can be no circular reasoning.

2.3 Bayesian Network Models 21

To make this more clear, let us look at an example—the burglar alarm
problem introduced in [Pearl 1988]—which is one of the most commonly
used in tutorials and educational material.

Example 1 (Burglar alarm) Suppose you are at work and your neigh-
bour gives you a call (C) to inform you that the burglar alarm (A) at your
home has gone off. So, thinking there has been a burglary (B), you jump
into your car and drive home. On the way, you listen to the news (N)
reporting an earthquake (E) in the area where you live. This changes your
degree of belief about a burglary having actually occurred.

There are five relevant variables involved: C, A, B, N and E. They are
all binary (boolean), taking on values in {t, f}, short for {true, false}. A
corresponding Bayesian Network B that we might want to use is given in
Figure 2.1.

AlarmNews Call

Earth−

quake
Burglary

Figure 2.1: A Bayesian Network B for the burglar alarm problem.

The joint probability distribution then simplifies to

PB(E,B,N,A,C) = P (E)P (B)P (N |E)P (A|E,B)P (C|A). (2.20)

P (E) depends on the area where you live and so does P (B), P (A|E,B)
depends on the quality of your alarm system, and so on. Let us now de-
fine the model, by writing down the probability tables for each of these
conditional distributions in Table 2.1. Note that this is a significant sim-
plification to arbitrary joint distributions represented by a fully connected
Bayesian network and specified by a probability table of size 25 = 32. The
full table lists 31 free parameters (the 32nd given by the preceding 31 as

22 2 Bayesian Reasoning

P (E)

earthquake
t f

0.003 0.997

P (B)

burglary
t f

0.002 0.998

P (N |E)

news
earthquake t f

t 0.7 0.3
f 0.001 0.999

P (A|E,B)

alarm
earthquake burglary t f

t t 0.95 0.05
t f 0.5 0.5
f t 0.9 0.1
f f 0.005 0.995

P (C|A)

call
alarm t f

t 0.8 0.2
f 0.004 0.996

Table 2.1: Subjective conditional probabilities for the burglar alarm prob-
lem.

one minus their sum), while Table 2.1, using network B from Figure 2.1,
only lists 10.

From these tables all individual conditional probabilities can be read
off, e.g., the probability your neighbour will actually call when the alarm
sounds is 0.8, the probability that the alarm will (falsely) alert in case there
is an earthquake but no burglary is 0.5, and so on. These probabilities are
predefined and subjective. Were we to learn the model from given training
data, these probabilities would be the relative observed frequencies for the
MAP model and the relative augmented frequencies—including the pseudo-
counts given by a Dirichlet prior—for the marginal likelihood model.

We can now calculate the probability you would give to the event of a
burglary at your home after your neighbour has called by summing over
the unobserved values e of E, n of N and a of A as well as normalizing over
the values b of B.

PB(B = t|C = t)

=

∑
e,n,a P (e)P (B = t)P (n|e)P (a|e,B = t)P (C = t|a)∑

e,b,n,a P (e)P (b)P (n|e)P (a|e, b)P (C = t|a)

=

∑
e,a P (e)P (B = t)P (a|e,B = t)P (C = t|a)∑

e,b,a P (e)P (b)P (a|e, b)P (C = t|a)
≈ 13.6% (2.21)

2.3 Bayesian Network Models 23

and similarly the belief, after the earthquake news has been broadcast
changes to

PB(B = t|N = t, C = t) ≈ 5.4%. (2.22)

The news about the earthquake has influenced our belief about there having
been a burglary. If there had not been a call from the neighbour about the
alarm sounding, this would not have been the case, as earthquake (E) and
burglary (B) are modeled as being independent events in B. Let us now
rewind and introduce some definitions.

Definition 1 (d-separatedness) Let B be a Bayesian network on vari-
ables X = {X1, . . . , Xm} and Z ⊆ X be a subset of these variables. Then
any two variables Xi, Xj /∈ Z are said to be d-separated by Z in B, if
every trail (path in the underlying undirected network) T from Xi to Xj is
blocked by Z, that is, we encounter at least one of the following situations:

• T contains a partial trail Xu → Xv ← Xw such that either Xv or a
descendant of Xv is an element of Z

• T contains a partial trail Xu—Xv—Xw such that at least one of the
two arcs points away from Xv, and Xv /∈ Z

Otherwise, Xi and Xj are said to be d-connected in B given Z.

Equivalently, Xi and Xj are d-separated (d for ’dependence’) by Z in B if,
and only if, for any B-model they are conditionally independent given
Z. In other words, for any set of parameters Θ of B we have

P (Xi, Xj |Z,B(Θ)) = P (Xi|Z,B(Θ))P (Xj |Z,B(Θ)). (2.23)

Therefore, d-separatedness is a means to read off conditional independence
assumptions from a network B.

In the burglar alarm example, N is d-separated from B given Z = ∅
(burglary and earthquake—or the news about one—are initially indepen-
dent events), but d-connected given {C}, the call providing evidence for
the alarm A. Therefore, after the phone call has been received, the radio
news can influence our belief in the event of a burglary.

Definition 2 (collider) A substructure Xu → Xv ← Xw of a Bayesian
network B is called a collider (inverted fork).

24 2 Bayesian Reasoning

A collider thus blocks a trail, if no evidence for its middle node Xv, i.e. for
none of its descendants nor Xv itself, is given (in Z). In all other situations,
a path is blocked by a variable Xv which is given.

Definition 3 (v-structure) A substructure Xu → Xv ← Xw is called a
v-structure (unshielded collider) if there is no direct arc between Xu and
Xw in B.

Lemma 1 When checking for conditional independence, it suffices to con-
sider v-structures instead of colliders.

Proof Let T be a trail between Xi and Xj which is not blocked by Z,
and Xu, Xv, Xw form a shielded collider along T with tip Xv. It follows
that Xu /∈ Z, Xw /∈ Z and there is evidence about Xv in Z (Xv or at least
one of its descendants is in Z).

Then also the trail T \ {Xv}, which short cuts from Xu to Xw, is not
blocked, since both Xu and Xw lie outside of Z, but have a descendant
which lies inside of Z. Therefore neither of the situations of Definition 1
applies to a partial trail of T \ {Xv} consisting of three nodes with middle
node Xu or Xw. �

Definition 4 (network equivalence) Bayesian networks B and B′ are
said to be equivalent, if they encode the same conditional independence
assumptions.

Lemma 2 Bayesian networks B and B′ are equivalent, if and only if their
underlying undirected graphs are identical and both have the same v-structures.

This is a direct consequence of Lemma 1.

Example 2 The networks depicted in Figures 2.1 and 2.2 are equivalent.
The arc between variables ’earthquake’ and ’news’ has been reversed, but
this changes no v-structures. Although the latter seems false on an intu-
itive level, it encodes the exact same conditional independence assumptions.
Bayesian networks do not encode causal dependencies.

Definition 5 (Markov blanket) The Markov Blanket MBB(X) of a
node X in B is the set of all its parents, all its children, and all parents of
any of its children in B.

The Markov Blanket of X consists of exactly those nodes on which X is
dependent—not d-separated—in the fully instantiated case. That is, for
X 6= Y ∈ X and Z := X \ {X,Y }, it holds that

2.3 Bayesian Network Models 25

AlarmNews Call

Earth−

quake
Burglary

Figure 2.2: An alternative Bayesian network for the burglar alarm problem,
equivalent to the network of Figure 2.1

Y /∈MBB(X)⇔ [P (X|Y,Z,B(Θ)) = P (X|Z,B(Θ)) for all Θ] . (2.24)

In equivalent networks all nodes have identical Markov blankets.

Using network B from Figure 2.1 with parameters Θ given by Table 2.1
we can calculate the joint probability of any instantiation (e, b, n, a, c) of
the variables E,B,N,A,C. Using Bayes’ rule we can also—by marginal-
izing over unobserved values—calculate all conditional probabilities. After
receiving the phone call we had P (B = t|C = t,M = B(Θ)) ≈ 13.6%,
and after listening to the news about the earthquake, the probability of
a burglary had dropped to P (B = t|C = t,N = t,M = B(Θ)) ≈ 5.4%.
This phenomenon, in which the branches of a v-structure become depen-
dent in the case where we have evidence for the tip of the v-structure, is
called explaining away. We have explained away the burglary by find-
ing another reasonable cause—the earthquake—for the behaviour of their
common child, the alarm.

26 2 Bayesian Reasoning

2.4 Bayesian Model Class Selection

Model class selection is the problem of, given some data D, finding a suit-
able model class C to describe it. In the Bayesian approach, this means
calculating the probability P (C|D), which by Bayes’ rule is

P (C|D) =
P (D|C)P (C)

P (D)
. (2.25)

The marginal data likelihood P (D|C) is defined in Equation 2.8, P (C) is
another prior distribution, which we need to define over all model classes
C ∈ F in the model family under consideration, and the term P (D) is
independent of C and thus serves as a normalizing constant.

One may then interpret P (C|D) as a degree of belief that the distri-
bution M that has generated D is a member of C, and conclude that the
maximizing C is the most probable class.

This approach, simple as it sounds, is problematic in a number of ways,
as we argue in the following. To make our criticism more explicit, we take
as an example the model family consisting of all Bayesian networks on m
multinomial variables, out of which we are to choose a suitable structure
B for a given data set D of size n. The Bayesian approach to model class
selection as such does not limit us to Bayesian network models, and it is
more of a coincidence that both are being labeled ’Bayesian’. However, con-
sidering Bayesian network models is a good means to identify the problems
arising in Bayesian model class selection.

Let X = {X1, . . . , Xm} be the data space consisting of m multinomial
variables Xi of corresponding cardinalities Ki and D be an n-fold i.i.d.
sample, i.e. an n × m-matrix, where each entry dji ∈ {1, . . . ,Ki} is the
value that sample dj (jth row) takes on at variable Xi (ith column). We
search for the most probable Bayesian network B, the one that maximizes
Equation 2.25.

Each Bayesian network B is parametrized by a vector ΘB with compo-
nents of the form ΘBxi|pai = P (Xi = xi|Pai = pai,M = B(ΘB)), which are
the entries of the conditional probability tables such as the ones listed in
Table 2.1. The joint data likelihood of data set D given network structure
B becomes

P (D|B(ΘB))
i.i.d.
=

n∏

j=1

P (dj|B(ΘB)) =

n∏

j=1

m∏

i=1

ΘBdji|pai(dj)
, (2.26)

where pai(dj) is the instantiation of the parent set Pai of variable Xi in B
which is given by the jth sample dj.

2.4 Bayesian Model Class Selection 27

If we now define a Dirichlet parameter prior for each conditional distri-
bution P (Xi|Pai = pai,B(ΘB)) = ΘB.|pai such that

ΘB.|pai ∼ Dir(α1|pai , . . . , αKi|pai) (2.27)

we also have the marginal data likelihood

P (D|B) =

∫

ΘB
P (D|B(ΘB))p(ΘB|B)dΘB

=

m∏

i=1

∏

pai∈Pai

(∏Ki
k=1 Γ(c(k|pai) + αk|pai)

Γ(
∑Ki

k=1(c(k|pai) + αk|pai))

Γ(
∑Ki

k=1 αk|pai)∏Ki
k=1 Γ(αk|pai)

)
. (2.28)

Whereas in Equation 2.16 we only had one multinomial distribution, we
now take the product over all conditional distributions appearing in B.
Again, c(k|pai) are the observed data counts and Γ is the Gamma function.

Let us now look at the problems arising, when we seek the ’most prob-
able’ Bayesian network for given data.

Problem 1 (the generating distribution assumption)
In order to define a distribution over the model classes C ∈ F , consisting
of the probabilities that a model M∈ C has generated the data D, we need
to be sure that in fact such model exists.

It is a philosophical question, whether or not any generating distribution
exists. But let us assume so. We still need to be sure that it is part of a
model class in F .

In our structure learning example, any multivariate multinomial distri-
bution lies in Bfull, the class corresponding to any fully connected network
(all of which are equivalent). But we have also made the i.i.d. assump-
tion. If it does not hold—the data source was not completely stationary
after all—it follows that the generating distribution lies outside of F , which
renders the search for the most probable model or model class meaningless.

Unless we are certain of our assumptions, i.e. we have generated the
data ourselves, all we can hope for is to find a useful network structure,
one that will give us good predictive performance.

Problem 2 (overlapping model classes)
The model classes in F may be overlapping, i.e. some of the models may
be contained in multiple classes. In this case, P (C|D) should not be a
distribution, but a superdistribution—sum to more than one—since models
in the areas of overlap contribute their corresponding probability mass to
more than just one class.

28 2 Bayesian Reasoning

This is true for the structure learning problem, not only because of net-
work equivalence. Observe, that adding arcs to a network B1 to arrive at
a network B2 only makes the model class larger (reduces the conditional
independence assumptions), such that we have B1 ⊂ B2 (as sets of distri-
butions). More severely

Problem 3 (undefined data probability)
The term P (D) in Equation 2.25 is undefined as such.

We can, however, interpret it as

P (D|F) =
∑

B∈F
P (D|B)P (B), (2.29)

that is, as a normalizing constant. But usually the model classes in F are
not disjoint, as is the case for the family of Bayesian network structures.

Problem 4 (large number of model classes)
Under the assumption that P (D|F) is meaningfully defined by Equation 2.29,
we may still not be able to compute it, if the number of model classes in F
is large.

The number of Bayesian network structures is huge already for a reasonably
small number of variables. There is only one structure for a single variable,
for two variables there are three networks (two of which are equivalent),
and for five variables—the situation of the burglar alarm example—there
are already 29.281 different structures. The number of networks grows su-
perexponentially with the number of variables, which can be seen by only
considering chains of the form X1 → X2 → · · · → Xm. For each ordering
of the variables there is one such chain, which means that there are already
m! chains for m variables. Restricting to equivalence classes of structures
does not change the situation either, since for each m there are only two
equivalent chains. For 10 variables we have more than 1019 network struc-
tures, and for 20 variables this number grows to over 1073 [Robinson 1977].
The number of equivalence classes is of the same order [Gillispie 2001].

This means that, in general, P (D|F) is beyond computational capac-
ity. We can, however, still compute the relative probability for any two
networks. In other words, we can still search for the best structure B. Un-
fortunately, the absolute probabilities P (B|D,F) will be very small. By
Bayesian reasoning, the most probable network will therefore almost cer-
tainly be wrong.

2.4 Bayesian Model Class Selection 29

Summarizing over Problems 1–4, we find that it makes no sense to talk
about the most probable model class. But can we still search for the most
useful class, the one that predicts best? The answer to this question—
naturally—greatly depends on the priors we choose.

Problem 5 (the parameter prior)
For each model class (Bayesian network structure B) we need to define a
suitable (Dirichlet) parameter prior.

As discussed in Sections 2.1 and 2.2, defining a reasonable parame-
ter prior α is not an easy task. Since usually we do not have expert
domain knowledge available, or are unable to transform it into Dirich-
let distributions, a frequently made choice is the so-called ’uniform’ prior
α.|pai ∼ Dir(1, . . . , 1), which assigns equal probability to all parameter vec-

tors ΘB. As the uniform prior also assigns equal probability to all data sets
of size 1, that is, to the first sample in the prequential game, it is often
thought to be ’non-informative’, see, e.g. [Hill 1997].

However, we need to remember that ’uniformity’ is a property only de-
fined with respect to a given parametrization. In fact it turns out that
the ’uniform’ prior, in general, yields different marginal likelihood for a
data set D when using different, but equivalent Bayesian networks (Defini-
tion 4), which encode the exact same independence assumptions and con-
sist of the exact same models (joint probability distributions). Equivalent
network structures differ in the way they are parametrized and therefore
the ’uniform’ prior can have a different meaning depending on the actual
representative one chooses for a given equivalence class, see Figure 2.3.

X X
1 2

X X
1 2

Figure 2.3: Two equivalent Bayesian network structures B1 (left) and B2

(right). For the ’uniform’ parameter prior the associated marginal like-
lihood distributions are different, iff the cardinalities of the multinomials
are: K1 6= K2 ⇔ P (.|B1) 6= P (.|B2). This can be seen most easily by
interpreting the Dirichlet prior as pseudo-counts.

Jeffreys’ prior [Jeffreys 1946] is invariant to reparametrization, yet being
used less frequently, largely for technical reasons. Its main drawback is that
it does not take on the Dirichlet form and hence is not conjugate. Both

30 2 Bayesian Reasoning

prior and posterior take on forms which cannot typically be formulated in
closed form and need to be approximated.

It can be shown, that the only Dirichlet priors which are invariant
to this type of parameter transformation are those that, when viewed as
pseudo-counts, correspond to actual data samples, non-integer counts al-
lowed. Therefore the only ’non-informative’ Dirichlet priors, in the fore-
mentioned sense, are the so-called equivalent sample size (ESS) priors
given by

αESS(S) : Θ.|pai ∼ Dir
(
S

Ki
, . . . ,

S

Ki

)
with Ki := Ki

∏

i′∈Pai
Ki′ . (2.30)

Using this type of parameter prior, we are left to choose only a single
parameter, the size S of the assumed pseudo-data, which is then being
spread evenly across the data space X.

Unfortunately, there is no natural choice for S, nor is the resulting prior
non-informative. As it turns out, the choice of the most probable network
is extremely sensitive to this parameter [Silander 2007].

Problem 6 (the class prior)
We need to define a suitable prior distribution P (C) over all classes in the
family F .

In structure learning, once more for lack of better knowledge, a uniform
prior over the network structures is often assumed. Due to the large number
of structures, all of them are therefore assigned very low prior probability.
Sometimes, also a uniform prior over the equivalence classes is being used,
which leads to similar results.

If we search for the most probable class, then we should assign probabil-
ity one to the equivalence class of fully connected networks, as it contains
all multivariate multinomial distributions. If, however, we look for a useful
network, we hope for something much simpler, as it will have larger support
for its parameters and generalize to unseen cases better.

Problem 7 (overfitting)
A too complex model class will overfit the observed data, generalize poorly
and not be useful at all.

The principle of Ockham’s razor tells us to choose the simplest hypothesis
explaining the observations, see, e.g. [Angluin 1983].

2.4 Bayesian Model Class Selection 31

Bayesian model class comparison is classically based on Bayes Factors,
see [Berger 1985], the ratio of marginal likelihoods. However, the choice of
model class according to this ratio may strongly depend on the parameter
prior being used, as demonstrated in [Silander 2007]. Also observe that
the marginal likelihood does not a priori favour simple model classes. In
fact, for the empty data D = {∅} it is equal to one for any model class,
which can be observed by plugging zero counts c ≡ 0 into Equation 2.16.
Therefore, complexity is often being penalized in a more explicit way.

So how can we measure complexity or simplicity in order to apply Ock-
ham’s razor? With Bayesian network we do have some idea of what ’simple’
means. At least we know that adding arcs makes a network more complex,
as it will represent a larger set of distributions. But what does ’explain’
mean in this context? Each network B assigns a probability P (D|B) to
the given data, which is strictly positive, but usually quite small. While in
the sense of Ockham’s razor a hypothesis either explains the data or does
not, for us ’explanation’ is measured continuously. The higher the assigned
probability, the better the explanation.

Clearly, there is a tradeoff between data fit and generalization capa-
bility. To this end, the so-called information criteria have been devel-
oped, the most prominent ones being the Akaike Information Criterion
(AIC, [Akaike 1974]) and the Bayesian Information Criterion (BIC,
[Schwarz 1978]). They make this tradeoff explicit by optimizing—instead
of the model class probability P (C|D)—a score of the form

XIC(C|D) = data fit(D|C)− penaltyXIC(C), (2.31)

XIC standing for ’any information criterion’.

The data fit term typically—and theoretically correctly—is the minus-
logarithm of the maximum likelihood (ML) P̂ (D|C), defined as

P̂ (D|C) = P (D|C(Θ̂(D))), (2.32)

where

Θ̂(D) = argmax
Θ

P (D|C(Θ)) (2.33)

is the set of parameters which, when we instantiate C with them, assigns
the maximum probability to D. The maximum likelihood parameters Θ̂(D)
need not be unique for P̂ (D|C) to be defined. XIC scores are purely model
class selection criteria and using the maximum likelihood to measure data
fit does not imply we should also use a maximum likelihood model C(P̂ (D))
for prediction.

32 2 Bayesian Reasoning

The penalty term differs for the various information criteria. Its purpose
is to measure expected generalization capability. For AIC this penalty
equals the number of free parameters nfp(C) in the model class,

penaltyAIC(C) = nfp(C), (2.34)

while for BIC also the data size n is relevant,

penaltyBIC(C, n) =
log n

2
nfp(C). (2.35)

Seemingly, Equation 2.31 couples two entirely different things, the num-
ber of free parameters of a model class and the negative logarithm of a
probability. But in fact the different penalty terms are approximations of
quantities of the same form. Both AIC and BIC (among others) have been
derived from asymptotic behaviour where the data size n goes to infinity
and have some desirable properties in the limit .

While asymptotics are good as a sanity check, in the real-world situation
of limited data availability we do not know how well the information criteria
will work, that is, how useful a model class chosen in this way will turn out
to be.

2.5 Supervised Learning Tasks 33

2.5 Supervised Learning Tasks

Let us now return to the task of parameter learning in Bayesian network
models. We have already seen that defining a suitable parameter prior
is problematic. Another problem arises, when we are presented with a
supervised (discriminative) learning task [Vapnik 1998]. This means that
we are not interested in the joint likelihood of a data sample, but only
in some aspects of it. In the multivariate multinomial data domain the
simplest—and most frequently encountered—supervised learning task is
that of classification. For clarity of notation we add a class variable X0

of cardinality K0 to the set of predictors {X1, . . . , Xm} to be defined as in
the preceding.

A classifier then is a conditional distribution P (X0|X1, . . . , Xm).

Traditionally, classifiers are seen as a functions f : X1, . . . , Xm → X0,
but here we deviate from this definition, since we consider probabilistic
models. We therefore require a classifier to return a distribution instead
of a single class. Of course, we can do that as well: return the class that
gets the highest probability (see Section 2.7). More generally, a supervised
learning task may also be to model a larger subset of the domain variables,
or some other aspects of the data space. For simplicity, we only consider
classification tasks here. The class variable (or, in general, the objective of
the supervised learning task) supervises parameter learning, by telling us
which aspects of the data are important to us.

It has been recognized, that for supervised prediction tasks such as clas-
sification, we should also use a supervised (discriminative) learning algo-
rithm, such as conditional likelihood maximization [Greiner 2001, Ng 2001,
Greiner 1997, Kontkanen 2001, Friedman 1997]. Nevertheless, in most re-
lated applications, model parameters are still determined using unsuper-
vised methods, such as joint likelihood maximization and ordinary Bayesian
methods.

Remember, that Bayesian networks model joint probability distribu-
tions over the data space X = {X0, . . . , Xm} by decomposing it into m+ 1
local, conditional distributions. Their parameters, regardless of whether
we choose to use marginal likelihood or maximum a posteriori, are deter-
mined with respect to the joint distribution. Of course we can calculate
the conditional distribution of the class given the predictor variables from

34 2 Bayesian Reasoning

the joint

P (x0|x1, . . . , xm) =
P (x0, x1 . . . , xm)

P (x1, . . . , xm)
=

P (x0, x1 . . . , xm)
∑K0

x′0=1 P (x′0, x1, . . . , xm)
, (2.36)

and this is exactly what is typically done, leading to Bayesian network
classifiers, see [Friedman 1997]. But this type of use does not correspond
to the design of these models, since the joint data likelihood when used for
parameter selection does not reflect performance in classification. This is
like driving your tractor to work. It can be done, but tractors were designed
for something else and there are better vehicles to get you to work.

Then why is it, that joint models, such as Bayesian classifiers, are still
being used for supervised tasks? The main reason may be the (most often
erroneous) assumption, that the chosen model class is ’correct’. Employing
asymptotics of unlimited data availability as a sanity check, we pass the
test if in fact data D is an i.i.d. sample drawn from a distribution in B.
This type of situation is visualized in Figure 2.4.

Figure 2.4: If the generating distribution (solid small circle) lies within
the model class (large circle), then the learned joint model (open small
circle) will approach it with growing data size to arbitrary precision with
probability one. The conditional distributions (projection to the x-axis)
will behave in the same way.

But if the generating distribution (assuming it exists) lies outside of B

2.5 Supervised Learning Tasks 35

the situation becomes different. The conditional distribution obtained from
the joint distribution in B which is closest to the true distribution (in terms
of KL-divergence) need not be the best classifier in the class. Therefore,
even with unlimited data availability, we may never get close to the most
useful model, i.e. the one that minimizes the conditional KL-divergence
from the true model. Intuition for this is given in Figure 2.5.

Figure 2.5: If the generating distribution (solid small circle) lies outside of
the model class (large circle) then, with growing data size, the learned joint
model (open small circle) will approach (under fairly weak assumptions,
see [Cover 1991]) the distribution closest to it within the model class (gray
circle). Conditioning this distribution (projecting to the x-axis) may not
mean approaching the best conditional model.

The second reason why Bayesian network classifiers often determine
their parameters by learning the joint distribution instead of the condi-
tional, is the difficulty in finding the global maximum of the conditional
likelihood. Publication I investigates the situations in which the model
parameters can be efficiently learned in a discriminative fashion and the
situations in which this is hard to accomplish. Section 2.6 summarizes
these results as well as closes a gap which had been left by the original
paper. While Publication I provides a sufficient condition under which a
Bayesian network classifier is equivalent to a logistic regression model, here
we are able to prove that this condition is also necessary.

36 2 Bayesian Reasoning

2.6 Discriminative Parameter Learning

Given a network structure B, we now investigate whether we can learn its
parameters in a discriminative fashion, that is, with respect to the condi-
tional distribution that is our objective. We do so by mapping B to a class
of logistic regression models.

A model B(Θ) with Θ = {Θxi|pai} defines the conditional likelihood of
the class X0 as

PB(x0|x1, . . . , xm) =
PB(x0, x1, . . . , xm)

∑K0

x′0=1 P
B(x′0, x1, . . . , xm)

=

∏m
i=0 Θxi|pai(x)∑K0

x′0=1

∏m
i=0 Θxi|pai(x′)

=
Θx0|pa0(x)

∏
i:X0∈Pai Θxi|pai(x)∑K0

x′0=1 Θx′0|pa0(x′)
∏
i:X0∈Pai Θxi|pai(x′)

, (2.37)

where we set x′ = (x′0, x1, . . . , xm), and pai(x) is the instantiation of Pai
given by x. Note that the variables appearing in the rightmost expression
are only X0 and its Markov blanket. This is due to the fact that all other
terms—the ones not involving x0 (resp. x′0)—cancel. Equation 2.37 defines
the B-classifier. We denote the set of conditional distributions obtained
using B in this way as Bcond = {Bcond(Θ)}.

Logistic regression models, e.g. [McLachlan 1992, p.255], are of similar
shape. Let X0 = {1, . . . ,K0} and let Y1, . . . , YK be real-valued random
variables. The multiple logistic regression model with dependent variable X0

and covariates Y1, . . . , YK is defined as the set of conditional distributions

PLR(x0 | y1, . . . , yK , β) :=
exp

∑K
k=1 βx0|k yk∑K0

x′0=1 exp
∑K

k=1 βx′0|k yk
(2.38)

where the model parameters βx0|k are allowed to take on any value in R.

This defines a conditional model parametrized in RK0·K .

Now, for i ∈ {0} ∪ {i : X0 ∈ Pai} (the class and its children in B),
xi ∈ {1, . . . ,Ki} and pai in the set of parent configurations of Xi, let

Yxi|pai :=

{
1 if Xi = xi and Pai = pai

0 otherwise.
(2.39)

Subsequently, for B-parameters Θ = {Θxi|pai} we set

βxi|pai = log Θxi|pai . (2.40)

2.6 Discriminative Parameter Learning 37

The indicator variables Yxi|pai can be lexicographically ordered and re-
named 1, . . . ,K. The corresponding parameters βxi|pai are of suitable
form—as x0 is either xi itself or a member of pai—but need to be renamed
accordingly. This shows that we have transformed the Bayesian network
model Bcond(Θ) into a logistic regression model, which we denote LRB(β).
Moreover, both models encode the same conditional distribution, as can
easily be verified.

This proves Theorem 1 of Publication I, namely

Bcond ⊆ LRB. (2.41)

At first sight, it would seem that we would even have equality here. Can
we not transform any model LRB(β) back into a model Bcond(Θ) by setting
Θxi|pai = expβxi|pai? Unfortunately, this is not the case in general. If of
course, the β’s come from Θ’s, transformed by taking their logarithms as
above, this can be done. However, for a general set β ∈ RK0·K (for suitable
K), the Θ’s will violate the sum-to-one constraints they are bound to by
the fact that they form local, conditional probability distributions. That
is, in order for Θ to be a set of parameters defining a model Bcond(Θ) we
must have

For all i ∈ {0} ∪ {i : X0 ∈ Pai} and all pai ∈ Pai :

Ki∑

xi=1

Θxi|pai = 1.

(2.42)

But what Theorem 1 does give us, is the fact that any class of con-
ditional Bayesian network models Bcond is contained in a (possibly larger)
class of logistic regression models LRB. In this model class, learning pa-
rameters that maximize the conditional likelihood

n∏

j=1

PLR(djo|dj1, . . . , djm, β) (2.43)

for given data D = (dji)j=1..n
i=0..m

is relatively easy. By Theorem 2 of Publi-

cation I, the conditional log-likelihood

n∑

j=1

logPLR(djo|dj1, . . . , djm, β) (2.44)

is a concave function of the parameters β. Together with the fact that
the parameter space RK0·K is convex we know that there can be no local

38 2 Bayesian Reasoning

maxima that are not at the same time also global maxima. Choosing a
strictly log-concave prior p(β) on β, and maximizing

n∑

j=1

logPLR(djo|dj1, . . . , djm, β) + log p(β) (2.45)

instead of Equation 2.44, we get a strictly concave objective, which can
be optimized locally, e.g. by hillclimbing methods. However, the model
LRB(β) found in this way may not correspond to a model Bcond(Θ) for any
Θ satisfying (2.42).

Theorem 3 of Publication I identifies the situations in which this does
not happen. If B satisfies the following condition, then for each model
LRB(β) in LRB there exists a parameter set Θ, such that Bcond(Θ) encodes
the same conditional distribution.

Condition 1. For all i such that X0 ∈ Pai, there exists Xi′ ∈ Pai such
that Pai ⊆ Pai′ ∪ {Xi′}.

The proof of Theorem 3 can be found in Publication 1. An alternative,
equivalent definition of Condition 1 is given in [Roos 2005b]. It states that,
when we restrict B to the Markov blanket of X0 and connect all parents of
X0 to arrive at a network B∗ (which can always be done without introducing
cycles, see [Lauritzen 1996]), then any two nodes having a common child
in must be connected in B∗.

In simpler terms, Condition 1 demands that any two parents of any child
Xi of the class X0 must be connected, unless they are both also parents of
X0 itself. The converse therefore is

Converse of Condition 1. There exists a child Xi of X0 with parents
Xj and Xk, such that

• Xj and Xk are not connected in B, and

• Xj is not a parent of X0

Figure 2.6 depicts examples of four classes of Bayesian networks, for
which Condition 1 is satisfied. Naive Bayes (NB) models assume that all
predictors are independent once the class x0 is known, see [Rish 2001]. In
the corresponding network all children of the class have only one parent, the
class itself. A diagnostic classifier [Kontkanen 2001] is defined by a network
structure in which the class does not have children at all. The network

2.6 Discriminative Parameter Learning 39

X

X X X

0

1 2 3

X

X X X

0

1 2 3

X

X X X

0

1 2 3

X

X X X

0

1 2 3

Figure 2.6: Examples of four types of Bayesian network satisfying Condi-
tion 1: Naive Bayes (NB, top left), a diagnostic classifier (top right), tree-
augmented naive Bayes (TAN, bottom left) and forest-augmented naive
Bayes (FAN, bottom right).

specifying a tree-augmented naive Bayes (TAN) classifier [Friedman 1997]
is that of naive Bayes, to which arcs have been added that form an out-
tree on the predictors. Similarly, forest-augmented naive Bayes (FAN) is
NB augmented by a forest on the predictors, i.e. a collection of out-trees.
TAN and FAN have in common, that any predictor Xi has the class X0 as
a parent and either no other parent, in which case Pai ⊆ Pa0 ∪ {X0} =
{X0}, or exactly one other parent Xi′ , in which case Pai ⊆ Pai′ ∪ {Xi′}.
Therefore, by Theorem 3, the conditional versions of all these model classes
are equivalent to a class of logistic regression models with freely varying
parameters.

Theorem 3 has proven, that Condition 1 is sufficient for model class
equivalence of the Bayesian network classifier to a suitably defined class of
logistic regression models. But is it also necessary? Figure 2.7 depicts three
types of networks, which do not satisfy the condition. Publication I proves
in its Theorem 4 that for the network marked ’Type I’ there in fact exists
a data set D for which the conditional log-likelihood (Equation 2.46) does
exhibit local, non-global maxima. This not only suggests that it cannot be
optimized locally, but moreover that the classifier is not equivalent to any
LR model, see below.

40 2 Bayesian Reasoning

X

X X

0

1 2

X

X X X

0

1 2 3

X

X X X

0

1 2 3

Type I Type II Type III

Figure 2.7: Three types of network structures not satisfying Condition 1.

Here, we prove a stronger result, which Publication I had left for ’future
work’. We claim that in fact Condition 1 is necessary and therefore we have

Theorem 4 (previously unpublished) For a Bayesian network B, there
exists a class of logistic models LRB that consists of the same conditional
distributions Bcond = LRB if and only if Condition 1 holds.

Proof (sketch). The ’if’ part is Theorem 3. It remains to show ’and
only if’. We prove that, if B does not satisfy Condition 1, i.e. the Converse
holds, then there exist data D for which the conditional log-likelihood

n∑

j=1

logPB(djo|dj1, . . . , djm,Θ) (2.46)

exhibits multiple peaks. This not only suggests that we cannot find the
global maximum by local search methods such as hillclimbing, but also that
the classifier is not equivalent to any LR model. For if it were, then the
log-transform (Equation 2.40) would preserve the peaks of the conditional
log-likelihood in contradiction to Theorem 2.

Let B be a Bayesian network for which the ’Converse of Condition 1’
holds, X0 being the class, Xi a child of X0, Xj and Xk parents of Xi such
that Xj /∈ Pa0 and Xj and Xk are not connected in B.

If X0 = Xj or X0 = Xk, or either of them is not connected to the class,
then there is a subgraph in B of Type I in Figure 2.7. If in turn this is
not the case, then X0, Xj and Xk are three distinct nodes, and both Xj

and Xk are connected to X0. By assumption, Xj is not a parent of X0,
which means it must be a child of the class. If Xk is likewise, then we have a
subgraph of Type II, otherwise we find a subgraph of Type III in Figure 2.7.
In fact, it is easy to see that Types II and III are equivalent. It suffices to
restrict attention to these subgraphs, since any data for the variables of a

2.6 Discriminative Parameter Learning 41

subgraph displaying multiple log-likelihood peaks can be extended to data
for all of B’s variables with the same property, e.g. by setting all values of
any vector for variables not appearing in the subgraph to the same value.
Also, we restrict to considering binary variables, without loss of generality.
Note, that for larger variable cardinalities the additional values need not
appear in D, as the counter example data is of our own construction.

For Type I our case has been proven in Publication I. We defined a data
set

DI =

1 1 1
1 1 2
2 2 1
2 2 2

 (2.47)

consisting of four data vectors, the columns corresponding to binary vari-
ables X0, X1 and X2 in this order. We then could show, that there are
four local, non-connected suprema of the conditional log-likelihood of DI .
With a little trick, we could also make these suprema maxima, each having
a different value. For the technical details please refer to Publication I, let
us here look at what happens on a more intuitive level.

Observe that the only dependency this data displays is the equality of
values in X0 and X1 for all four vectors, while all combinations of values
in X1 and X2 appear. But there is no edge in B(Type I) to directly model
this dependency. On the other hand, X2 is arbitrary. For each vector with
X2 = 1 we also have its counterpart, differing from it only in that it has
X2 = 2. The Bayesian classifier can now exploit its ability to explain away
(cf. Sec. 2.3) and use the conditional probability table at X2 to introduce
the observed dependency between X0 and X1 into the conditional model.
While doing so, the joint likelihood decreases, but the conditional goes up.
We ’sacrifice’ probability at X2, which plays no part in the objective of the
classification task.

For Types II and III we take a similar approach. We define

DII/III =

1 1 1 1
2 1 1 2
1 1 2 1
2 1 2 2
2 2 1 1
1 2 1 2
2 2 2 1
1 2 2 2

; (2.48)

columns corresponding to variables X0, X1, X2 and X3. In DII/III we find

42 2 Bayesian Reasoning

all combinations of values for X1, X2 and X3 but the class takes on value

X0 =

{
1 if X1 = X3

2 if X1 6= X3

. (2.49)

Therefore the class depends on none of the predictors directly, but we can
explain away the class based on the value of ’X1 = X3?’ through X2. In
effect, we have reduced Type II/III to Type I, where now ’X1 = X3?’ plays
the role of X1 in Type I. The rest of the proof is analogue to the proof of
(the weaker) Theorem 4 in Publication I. We omit the technicalities. �

We have shown, that learning the parameters of a Bayesian network
classifier via the conditional likelihood, rather than the joint, can be done
efficiently whenever the corresponding network structure satisfies Condi-
tion 1. If it does not, then there can be multiple local, non-global optima,
which potentially makes finding the global optimum a hard task. It remains
to show that indeed, the resulting classifier is to be prefered over the vanilla
solution. We investigate this empirically in the following section.

2.7 Empirical Evaluation 43

2.7 Empirical Evaluation

We study the usefulness of discriminative parameter learning using the
naive Bayes classifier as an example. The corresponding network structure
(an example is given in Figure 2.6, top left) satisfies Condition 1, and there-
fore the classifier is equivalent to logistic regression with suitably defined
covariates. The following results have been published in a technical report
accompanying Publication I, [Wettig 2002a].

Note, that the conditional log-likelihood as a function of the standard
Bayesian network parameters Θ cannot have local, non-global maxima,
since the log-transform (Equation 2.40) would preserve them and we know
that there are no such maxima in the conditional log-likelihood viewed as a
function of the LR parameters β. However, in the original parametrization
the conditional log-likelihood is not concave and, if we restrict the param-
eter space to a convex subset, we can no longer be sure that there will
be no unconnected local maxima. The log-transform mends this situation
by concavifying the objective, see [Wettig 2002a]. Also, the sum-to-one
constraints seem inconvenient in optimization, and therefore we choose to
maximize the conditional log-likelihood in the LR parameter space. Em-
pirical evidence, giving additional reason to prefer the LR parametrization
over standard Bayesian, has been reported in [Greiner 2002].

We maximize the objective by iteratively optimizing one parameter
βx0|k at a time with growing precision, and terminate the search when the
norm of the gradient at the current solution has dropped below a predefined
threshold. This was sufficiently fast for our purposes, for a comparison of
more sophisticated methods see, e.g., [Minka 2001].

The vanilla NB classifier uses the uniform prior wrt. its standard
parametrization. To be fair, we tried to define the prior p(β) on the LR
parameters to be as close as possible to this. To that end, we transform the
β’s back into the standard parameter space—by taking their exponentials
and normalizing suitably— and then take their product

p(β) :=
K∏

k=1

K0∏

x0=1

expβx0|k∑
x′0

expβx′0|k
. (2.50)

This is what we obtain when we interpret the uniform NB prior as pseudo-
counts and look at the predictors one-at-a-time. Of course, this is not
actually the same thing as a Bayesian uniform prior on the joint distribu-
tions, but since the LR model does not define any joint distribution, this
seemed to be the best we can do.

We compared the NB and LR models using 32 real-world data sets from

44 2 Bayesian Reasoning

0/1-loss log-loss
Data n m K NB LR NB LR

Mushrooms 8124 21 234 95.57 100.00 0.131 0.002
Page Blocks 5473 10 420 94.74 96.29 0.172 0.102

Abalone 4177 8 1008 23.49 25.95 2.920 2.082
Segmentation 2310 19 917 94.20 97.01 0.181 0.118

Yeast 1484 8 1060 55.59 57.75 1.155 1.140
German Credit 1000 20 244 75.20 74.30 0.535 0.524

TicTacToe 958 9 56 69.42 98.33 0.544 0.099
Vehicle Silhouettes 846 18 1116 63.95 72.22 1.731 0.682

Annealing 798 31 740 93.11 99.00 0.161 0.053
Diabetes 768 8 178 76.30 75.78 0.488 0.479

Breast C. (Wisc.) 699 10 222 97.42 96.42 0.260 0.105
Australian Credit 690 14 232 86.52 85.94 0.414 0.334

Balance Scale 625 4 63 92.16 93.60 0.508 0.231
Congr. Voting 435 16 104 90.11 96.32 0.632 0.102

Mole Fever 425 32 408 90.35 88.71 0.213 0.241
Dermatology 366 34 804 97.81 97.81 0.042 0.079
Ionosphere 351 33 402 92.31 92.59 0.361 0.171

Liver 345 6 236 64.06 68.70 0.643 0.629
Primary Tumor 339 17 903 48.97 49.26 1.930 1.769

Ecoli 336 7 760 80.36 81.85 0.518 0.562
Soybean 307 35 2527 85.02 90.23 0.647 0.314

Heart D. (Clevel.) 303 13 510 58.09 55.78 1.221 1.214
H.D. (Hungarian) 294 13 210 83.33 82.99 0.562 0.444

Breast Cancer 286 9 88 72.38 70.98 0.644 0.606
Heart D. (Statlog) 270 13 162 85.19 83.33 0.422 0.419
Thyroid Disease 215 5 198 98.60 94.88 0.054 0.132

Glass Identification 214 10 804 70.09 69.63 0.913 0.809
Wine Recognition 178 13 573 97.19 96.63 0.056 0.169

Hepatitis 155 19 274 79.35 82.58 0.560 0.392
Iris Plant 150 4 255 94.00 94.67 0.169 0.265

Lymphography 148 18 240 85.81 86.49 0.436 0.375
Postoperative 90 8 75 67.78 66.67 0.840 0.837

Table 2.2: Leave-one-out cross-validation results

the UC Irvine Machine Learning Repository (archive/ics.uci.edu/ml/).
Continuous data were discretized, the exact method and discretized data
sets can be found at www.cs.Helsinki.FI/u/pkontkan/Data/. We per-
formed leave-one-out cross-validation, n times holding out one data sample
at a time and training on the remaining n− 1. We report, for both model
classes, the 0/1-loss as percentage of correct classifications (when we return

2.7 Empirical Evaluation 45

the most probable class) and the log-loss, i.e. the average natural logarithm
of the probability assigned to the correct class. Apart from the prior, the
latter is exactly what we are optimizing on the training data with the LR
model. The former is correlated, and commonly reported for classification
tasks, but—also due to its discrete nature—we do expect it to behave less
decisively.

The results we have obtained in this way are listed in Table 2.2, where
n denotes data size, m the number of predictors and K the number of
parameters—which is equal for both model classes—as we had before. Win-
ning scores are boldfaced.

We observe, that in 26 out 32 cases the discriminative method has pro-
duced lower log-loss. On all larger data sets, it consistently outperformed
the NB classifier, in several cases by a large margin. On six of the smaller
data LR actually lost to NB, but by much smaller margin. As expected,
the situation is less clear-cut for the 0/1-loss, but LR still wins 18:13 (with
one draw), again larger data working in favour of LR. Similar observations
have been reported in [Ng 2001].

We presume that this behaviour means that LR, as it better fits the
training data, is also more prone to overfitting. But this is not to say that
on small data sets optimizing the joint likelihood is to be prefered. In fact,
unsupervised—joint—learning is no automatism to prevent overfitting. In-
stead, we propose a different approach. In logistic regression, it is easy
to prune parameters from the model, effectively just fixing them to zero.
In Bayesian network models, we can remove arcs from the network struc-
ture to obtain a simpler, better generalizing model class, e.g. predictor
selection in naive Bayes classification. This amounts to the removal of a
whole set of parameters. But logistic regression is more flexible than that.
We can remove any set of parameters—not just sets that correspond to
arc removal—even just a single parameter. One possible criterion for pa-
rameter selection is the size of its support, as suggested in [Wettig 2002b].
Here we remove a parameter βxi|pai (set it to zero), whenever its support
|{1 ≤ j ≤ n : dji = xi and pai(dj) = pai}| ≤ T in D does not exceed a
given threshold T .

An even more elegant solution is the use of the so-called α-prior (Laplace
prior, L1-prior) defined by

log pα(β) := α
K∑

k=1

K0∑

x0=1

|βx0|k|. (2.51)

An example of its behaviour as compared to that of the ’transformed
uniform’ prior we have used in our experiments is plotted in Figure 2.8.

46 2 Bayesian Reasoning

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

 0

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

lo
g(

pr
io

r)

parameter value

transformed uniform
alpha = 1

Figure 2.8: The logarithms of the prior probabilities pα(β1|k, β2|k) with α =
1, and the ’transformed uniform’ (2.50) of a pair of parameters predicting
a binary class evaluated at β1|k = −β2|k.

We see that for large parameter values the two priors essentially agree,
but the α-prior much more clearly prefers values near zero. In fact, test
runs we have performed on the same data used here (plus some others)
have shown that a model trained using the α-prior usually becomes quite
sparse. In typical cases with hundreds of parameters and data size ranging
from the hundreds to the thousands, most parameter values will be zero
exactly, and thus have been pruned away. Exactly how sparse a model will
be obviously depends on the value chosen for α. This way of automatic
parameter selection clearly improves prediction, especially with small data
size. We have not published these results, as others have beat us to it,
e.g. [Cawley 2007].

2.8 Summary 47

2.8 Summary

This chapter has given an introduction to Bayesian reasoning and, more
specifically, to Bayesian network models. We have seen that Bayesian net-
work models can be a very neat way of expressing our subjective beliefs, as
long as we have a good understanding of the problem domain. That is, we
need to be able to explicitly encode reasonable independence assumptions
as a network structure and instantiate its parameters locally as conditional
probability tables. Then we can calculate the resulting joint (global) proba-
bility distribution and—by conditioning—any conditional distributions we
might be interested in, which need no longer be local within the network.

Learning from data, however, is much harder. First of all, the condi-
tional distributions that have been calculated from the joint need not be
optimal with respect to the training data. Learning the joint distribution
is always a compromise, as we optimize all conditional distributions simul-
taneously. Any specific such conditional may thus be far from optimal. It
is hardly the fault of Bayesian network models, that they are frequently
being used for discriminative learning tasks such as classification. We have
shown, that in many cases there is no need to do so, either. This is where
the author’s contributions of this chapter lie. In Section 2.6 we have ex-
plicitly identified the situations in which we can—and those in which we
cannot—(easily) learn the parameters of a Bayesian network classifier op-
timally in a discriminative way instead of suboptimally from the joint. We
did so by transforming the classifier into a class of logistic regression mod-
els. This can always be done, and this transformation is always one-to-one,
but only under ’Condition 1’ on the network structure is it also onto. The
condition holds, intuitively speaking, whenever the Bayesian classifier does
not explain away the class. As we would have guessed, logistic regression
models cannot explain away. But any other type dependencies a Bayesian
classifier is able capture can also be represented by a logistic regression
model, which is easier to handle and more flexible.

Another problem associated with parameter learning in Bayesian net-
works is the need for a prior distribution. We need this parameter prior,
in order to obtain a posterior distribution; the training data transform the
prior into a posterior. And while it can be seen as an asset that Bayesian
network models force us to make our prior beliefs explicit, in practice it
is typically unclear how to transform these beliefs into a prior distribution
over the parameters. In fact, the only computationally convenient prior is
Dirichlet, which is far from being intuitive. We are—more or less—safe,
as long as we have a fixed, simple network structure and loads of data.
But when we want to learn the network structure from data the situation

48 2 Bayesian Reasoning

becomes awkward, as in structure learning the parameter prior plays a de-
cisive role. The main reason for this being that, with respect to the model
complexity, we never seem to have a sufficient amount of data available, as
in model class selection complexity is a function of the data size. Therefore,
the amount of data serving as support for any given parameter will remain
strictly limited.

In many important areas, such as admission of pharmaceutic products
and courts of law, classic hypothesis testing using t-tests with p-values is
still the norm. Over the last decades, however, it has become increas-
ingly accepted that Bayesian model class selection should be prefered, as
it provides more objective, less biased answers [Kruschke 2012]. But also
this approach faces its problems, as listed and discussed in Section 2.4.
One of them being the ’X-Files assumption’ (“the truth is out there”), the
conjecture that the data generating distribution exists, and lies inside the
considered model family. And while we do not claim that there exist no
Bayesian solutions to these problems, it often is beneficial to take an utterly
different approach.

In the following chapter, we introduce the Minimum Description
Length (MDL) Principle, which offers an elegant framework for the task
of model class selection. Many of the problems that the Bayesian approach
has to deal with simply will not arise, to others there will be simple and
straightforward solutions.

Chapter 3

Information Theory

“The truth is in there.”

3.1 The Minimum Description Length Principle

Information theory quantifies information, measuring it in bits. Classic
information theory, developed by the American mathematician Claude E.
Shannon (1916–2001) [Shannon 1948], measures the information content of
a data generating source as the expected number of bits needed to commu-
nicate a sample from it over a noiseless channel. This entity is called the
(Shannon) entropy (denoted H after Boltzmann’s H-theorem) and is, for
a multinomial random variable X with cardinality K, defined by

H(X) = −
K∑

k=1

P (X = k) logP (X = k). (3.1)

Figure 3.1 shows a plot of the binary entropy H2(X) as a function of
P (X = 1) = 1 − P (X = 2). Entropy can also be viewed as a measure of
uncertainty. It is maximized for the uniform distribution with value logK
and minimized for the completely specified case (probabilities equal zero
or one), when there is no uncertainty about the outcome and the entropy
is zero. For example, tossing a fair coin contains one bit of information
per throw, and a coin toss with known outcome delivers no additional
information. The information content of the throw of a biased coin lies
inbetween these extrema and is measured by the entropy.

49

50 3 Information Theory

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
nt

ro
py

 H
(X

)

P(X=1) = 1 - P(X=2)

Figure 3.1: Plot of the binary entropy.

Note, that the entropy is a function of a distribution Q, so sometimes it
is more intuitive to write H(Q) in place of H(X). The following theorem
links the entropy to codelength.

Theorem 5 (Shannon’s source coding theorem, [Shannon 1948])
Let Q be a distribution over a finite set Σ, and L a uniquely decodable code
(e.g. a prefix code) that for σ ∈ Σ assigns a code word of length |L(σ)|.
If L is optimal in that it minimizes the expected codelength EQ[|L(σ)|] then
we have

H(Q) ≤ EQ[|L(σ)|] ≤ H(Q) + 1. (3.2)

In practice, we will disregard the ’+1’. When encoding n entities
σ1, . . . , σn, we can achieve

nH(Q) ≤ EQ

n∑

j=1

|L(σj)|

 ≤ nH(Q) + 1, (3.3)

and therefore rounding up to an integer number of bits has no significance in
our applications. Or, as Peter Grünwald puts it, ’Non-integer Codelengths

3.1 The Minimum Description Length Principle 51

Are Harmless’ [Grünwald 2007, p.95]1. We crudely allow real-valued code-
lengths.

In the year following the publication of Shannon’s theorem, Leon G.
Kraft—refering to Shannon’s work—proved a stronger result, which has
become known as Kraft’s inequality.

Theorem 6 (Kraft’s inequality, [Kraft 1949])
Let each symbol from an alphabet Σ = {σ1, . . . , σK} be encoded by a uniquely
decodable code with corresponding codeword lengths l1, . . . , lK then

K∑

i=1

2−li ≤ 1. (3.4)

Conversely, for a set of integers (read: numbers) l1, . . . , lK satisfying this
inequality, there exists a uniquely decodable code for Σ with these code-
lengths.

Remark 2 This result also applies to countably infinite alphabets.

Remark 3 Kraft originally proved the theorem only for prefix codes. The
generalization to any uniquely decodable code is due to Brockway McMil-
lan [McMillan 1956]. For this reason, the above is sometimes also referred
to as the Kraft-McMillan inequality.

Remark 4 We use a capital L to denote the actual encoding L(σ) of an
entity σ. Its length—a real-valued number of bits—will be denoted by a
lower case l: l(σ) = |L(σ)|.

We can now, for any probability distribution P = (p1, . . . , pK) over the
alphabet Σ define a uniquely decodable code with corresponding codeword
lengths li = − log pi, satisfying Kraft’s inequality. In fact, there is no
need to explicitly define it, it suffices to know that such code exists. Of
course, the expected codelength per symbol will be H(P), the entropy of
the distribution.

But Kraft’s inequality gives us more than that. We can also turn
any uniquely decodable code into a probability distribution, by setting
pi = C−1 · 2li , where C ≤ 1 is a normalizing constant needed in case (3.4)
is strict, i.e.

K∑

i=1

2−li = C < 1. (3.5)

1A rumour goes that, for the second edition of the book, this will be changed into
’Mostly Harmless’.

52 3 Information Theory

If equality does hold, then C = 1 plays no role.

Therefore, codelengths and probabilities are essentially the same. Cod-
ing and modeling are equivalent. The shorter the codelength, the higher
the probability the code assigns to a data. With this observation, learning
from data becomes finding regularities in it. These regularities help us to
compress the data, and also to predict future data.

This is the Minimum Description Length (MDL) Principle, intro-
duced by Jorma Rissanen [Rissanen 1978]. When the (two-to-the-minus)
size of a compressed file is being viewed as a probability, then minimum
description length means maximum probability.

But ’probability’ takes on a slightly different meaning now. The prob-
ability distribution defined by any model does convert into an encoding
scheme. And if the model is ’correct’—i.e., it equals the data generating
distribution—then, by Shannon’s theorem, the corresponding code is opti-
mal in that it minimizes the expected codelength of data coming from this
source. This expectation is the entropy of the source. But, when we learn a
model from data, i.e. choose a model from a model class which best fits the
data, then the resulting code is not uniquely decodable without knowledge
of that choice.

A good way to describe the situation is the way Shannon looked at it.
Picture a sender, a (noiseless) channel, and a receiver. The sender encodes
data D, the encoded message L(D) is transmitted over a channel (which is
expensive and there is no flat-rate; we want to keep the message short), and
the receiver needs to be able to recover the original data from this message.
Figure 3.2 visualizes this concept.

D D
Sender

encodes

Receiver

decodes

L(D)
Channel (costs |L(D)|)

Figure 3.2: Schematic representation of the channel coding game.

This scheme forces us to be very explicit about three things:

1. Is the message decodable? This is a very good sanity check, which
keeps us from cheating. If we cannot recover D from L(D), then we have
forgotten to transmit some vital information. As a result, Kraft’s inequality
may not hold and therefore the code may not be transformable into a
probability (sub-) distribution.

In standard modeling, there is no such sanity check. Of course, every

3.1 The Minimum Description Length Principle 53

model is a probability distribution and thereby forced to sum to one. But
the actual distribution used is often implicit, e.g., we can hardly recover
a model from a file of size equal to an information criterion penalty term
such as (2.34) or (2.35).

2. Is this the shortest we can do? Of course, we really have no way
of knowing, see Section 3.3. But we can always scan the message L(D)
for remaining regularities and, if we find any, include them in our code
to make the message shorter. Observe that also any standard compressor
such as gzip, bzip2 and the like defines a code, as the compressed files
are uniquely decodable. Therefore, we can always compare our codelength
|L(D)| against, say, the length of the file ’D.gz’. We can also use standard
compressors on the message L(D). If the message further compresses then
we must have overlooked some regularity.

There is no such ’remainder’ to scan for additional regularity in prob-
abilistic modeling, nor are other methods, such as standard compressors,
directly comparable.

3. What have we agreed upon? In order for the receiver to be able
to interpret the message, she and the sender must have agreed upon an
encoding scheme. They have to meet at least once, e.g. on an open channel
in the internet, and talk about what it is exactly that will be sent, in which
order, and how it is going to be encoded. In other words, we need to
be very clear about what is given and what is assumed. For example,
sender and receiver may agree upon an i.i.d. assumption and that the data
may arrive in any order. Of course, this is not enough. There has to be
common knowledge about what the data structure is, which model family
is being used, any side information and so on. Everything that is needed to
interpret the message must have been agreed upon in advance. When we
are being this explicit, it is easy to check whether this agreement matches
the problem, whether we are actually sending the information we want to
find regularities in.

Extreme cases of this are the null agreement (e.g., ’I will send you a
selfextracting file. Run it and it will produce everything you need to know’)
and full specification (e.g., ’I will send you data of size n for the burglar
alarm problem, using the network from Figure 2.1 with probabilities from
Table 2.1’). Of course, the latter does not make much sense, we have not
actually learned anything or found any regularities in the data. Learning
is always a problem of selection, we need to find a model class and/or
a model, that describes the data well or, equivalently, a coding scheme

54 3 Information Theory

that compresses the data well. Usually, the nature of the sender-receiver
agreement will lie somewhere inbetween the two extremes. In any case, we
are fine as long as we remember to never agree on anything, which may
depend on data that is yet to be sent.

The ’fully specified’ example illustrates, that any model whatsoever is also
a code. But the main area of application for the MDL principle lies in
model class selection. Observe that, at this point, we have already solved
the first three problems related to Bayesian model class selection discussed
in Section 2.4.

Solution to Problem 1 (no generating distribution assumption)
We do not assume that data D have been generated by any distribution.
We are simply compressing it, wherever it might have come from. If we do
a good job, the resulting code will be useful, but there is no such thing as a
correct code.

Solution to Problem 2 (overlapping model classes)
Since we only want to find a useful code, we do not need to worry about this.
Of course, there may be many ways to encode the same data D and there-
fore, using the shortest encoding we can find, usually renders an incomplete
code, i.e. Kraft’s inequality will be strict. However, the normalizing con-
stant

C =
∑

D′∼D

2−l(D
′) < 1, (3.6)

is a value associated only with the code L. So if L allows the use of alterna-
tive model classes, minimizing l(D) will still pick the best, most compressing
one. By D′ ∼ D we mean that D′ and D are of the same (previously
agreed upon) format, e.g. matrices of the same dimensions with values from
the same alphabets.

Solution to Problem 3 (defined data codelength)
P (D) = C−12−l(D) is always defined, even though C may not be known.

The simplest way to implement the MDL Principle are the so-called
two-part codes. The following section explains this concept and gives
illustrating examples.

3.2 Two-Part Codes 55

3.2 Two-Part Codes

The basic idea of two-part coding, given a model class C, is to first
encode the model parameters Θ and subsequently the actual data D using
distribution C(Θ):

l2pC (D) = l(Θ) + l(D; C(Θ)). (3.7)

We may then choose the best model class as the one that minimizes this
combined codelength.

Taking the negative of Equation 3.7 (now to be maximized) makes it
look a lot like the information criteria (2.31),

−l2pC (D) = logP (D|C(Θ))− l(Θ). (3.8)

Therefore we can regard l(Θ) as a complexity penalty term. If we choose
to encode the parameters in a given (previously agreed upon) range to
given precision, then we arrive at a penalty term that only depends on the
number of (free) parameters, as we have for AIC. If range and/or precision
depend on the data size, then so does the penalty term, as it does for BIC.
But where the XIC were just criteria that have fallen from the skies of
asymptotics, we now have the decodability requirement to meet.

At this point, it becomes clear why it makes no sense to simply select
the model that assigns the highest probability P (D|C(Θ̂)) to the data.
This would be disregarding the term l(Θ), the length of the encoding of
the used model, which is a measure of its complexity. We cannot recover D
from a message of length − logP (D|C(Θ̂)), as—summed over all possible
data—these code lengths violate Kraft’s inequality.

Remark 5 We use the term ’two-part code’ whenever we encode the model
parameters separately, following the notation of [Grünwald 2007]. Other-
wise we speak of ’one-part codes’. This terminology may be somewhat con-
fusing, as both types of encoding may involve multiple parts, a one-part
code may consist of two or more parts and a two-part code of, say, five. In
the literature (including attached Publications III–VI), there is no unani-
mous way of using ’two-part coding’ to denote ’separate parameter encod-
ing’. For obvious reasons, this is sometimes referred to as ’naive MDL’,
e.g. [Djurić 1998].

Let us now look at a few examples.

Two-part encoding using a Bayesian network B
Let, as in Section 2.4, X = {X1, . . . , Xm} be the data space consist-
ing of m multinomial variables Xi of corresponding cardinalities Ki and

56 3 Information Theory

D = (dji)j=1..n
i=1..m

consist of n samples dj, with m entries dji ∈ {1, . . . ,Ki}
each. Given a Bayesian network B on the variables Xi ∈ X, we order the Xi

such that for all i we have Pai ⊆ {X1, . . . , Xi−1}. We want to first encode
the model parameters Θ = (Θxi|pai) and subsequently D using B(Θ).

Since the parameters are continuous, we can only encode them to finite
precision. However, the MAP parameters are relative frequencies, so for
our purposes it is enough to encode these frequencies, the counts of D
with respect to B. Slightly deviating from standard two-part coding, we
encode D columnwise, for each variable Xi first encoding the corresponding
parameters, and then its n values d1i, . . . , dni.

Assuming that the data size n is known to the receiver, the counts at
X1 can be communicated using

log

(
n+K1 − 1

K1 − 1

)
(3.9)

bits, since
(
n+K1−1
K1−1

)
is the number of weak compositions of n into K1 parts,

see [Andrews 1976], or the number of different count vectors at X1 for data
of size n. The first column of D can then be transmitted in

−
K1∑

k=1

c1
k log Θ1

k = −
K1∑

k=1

c1
k log

c1
k

n
= −

K1∑

k=1

c1
k log c1

k + n log n (3.10)

bits, where c1 = (c1
1, . . . , c

1
K1

) is the vector of counts at X1 encoded above,

which transforms into MAP parameters Θ1
k =

c1k
n . For zero counts, we take

on the convenient convention that 0 log 0 = 0.
For the remaining variables X2, . . . , XM , which may have parents in

B, we need to encode Ki =
∏
i′:Xi∈Pai′ Ki′ sets of parameters (counts)

(Θi
k|pai)k=1..Ki ((cik|pai)k=1..Ki), which takes

log

(
c(pai) +Ki − 1

Ki − 1

)
(3.11)

bits for each instantiation pai ∈ Pai. Note, that the parent counts c(pai)
are known to the receiver at this point. Coding the ith column of D using
these MAP parameters then takes

−
∑

pai∈Pai

Ki∑

k=1

cik|pai log
cik|pai
c(pai)

=
∑

pai∈Pai

(
−

Ki∑

k=1

cik|pai log cik|pai + c(pai) log c(pai)

)
(3.12)

3.2 Two-Part Codes 57

bits. The overall codelength becomes

l2p(D;n, π,B) =
m∑

i=1

∑

pai∈Pai
log

(
c(pai) +Ki − 1

Ki − 1

)

+
m∑

i=1

∑

pai∈Pai

(
−

Ki∑

k=1

cik|pai log cik|pai + c(pai) log c(pai)

)
, (3.13)

where for any Xi with Pai = ∅ we assume there is a single instantiation
pai with c(pai) = n. Sender and receiver have previously agreed upon data
size n, the ordering of the variables π and the network structure B. For
this reason we have included them in the codelength term l2p(D;n, π,B),
separated from the data to be encoded by a semicolon. Read: ’Two-part
codelength of D using n, π and B’.

Note that the ’penalty term’ in the upper line of Equation 3.13 depends
on the actual data, not only on its size. This is not dangerous. In MDL,
any clever way of encoding is permitted. Which is not to say that the above
is very clever, it merely serves as an example of what one could do.

The parameter prior we have implicitly used is uniform in that any count
vector (cik|pai)k=1..Ki,pai∈Pai for each variable Xi with parent instantiation
pai is encoded with constant length. On the other hand, it gives point
mass only to parameters corresponding to data counts, while assigning zero
probability to any other parameters.

Two-part encoding using any Bayesian network
Let us now assume, that sender and receiver have only agreed on the fact
that they will use a Bayesian network to encode data from domain X, but
not on its actual structure. The sender wants to be free to, after having
seen the data D, choose some network B that yields short codelength.

We first encode the data size n in a selfdelimiting way, [Li 1997, p.79],
which can be done in 2 log n+1 bits by first sending log n ones, then a single
zero followed by log n bits to encode n itself. In general, there is a shorter
selfdelimiting description of an integer n. With the iterated logarithm, we
can achieve l(n) = log(n) + O(log log n), see [Li 1997, p.80]2. Next, we
encode the network structure. As there are superexponentially many such
structures, but for our limited data size we expect to be using a relatively

2a simpler way to achieve an encoding of same order length is to encode logn in
blocks of k bits and reserving one block as a special string to mean ’end of this part’,
then sending this special string, followed by the encoding of n of length logn. In this

way, for any k ≥ 2, we get a codelength of k
(

log logn

log(2k−1)
+ 1
)

+ logn.

58 3 Information Theory

sparse network, it seems beneficial not to use a uniform distribution. In-
stead, we may simply list all arcs, first giving the number 0 ≤ |Pai| ≤ m−1
of parents using logm bits per node and then specifying which parents are
present using log

(
m−1
|Pai|

)
bits for node Xi. Of course, in this way we can

also encode networks which are not DAGs, and therefore we could define a
tighter code if we bothered. A suitable ordering π of the variables can be
retrieved by the receiver from the structure. We get an overall codelength
of

l2p(D) = 2 log n + 1 + m logm +
∑

i

log

(
m− 1

|Pai|

)
+ l2p(D;n, π,B).

(3.14)

One-part encoding using a Bayesian network
Of course, we could have also employed the marginal likelihood, instead of
encoding the parameters explicitly. Here, sender and receiver agree on a
set of pseudo-counts α, for example an ESS prior as in Equation 2.30, and
then play the prequential game of Remark 1 in Section 2.2. That is, the
data samples are transmitted one at a time, and after each transmission
both sender and receiver update their counts (including the pseudo-counts
α) and always use the relative counts observed so far as the probability
distribution to encode/decode the next sample. The resulting codelength
is the negative of the marginal log-likelihood

l1p(D;n, π,B, α) =

m∑

i=1

∑

pai∈Pai

(
−

Ki∑

k=1

log Γ(c(k|pai) + αk|pai)

+ log Γ(

Ki∑

k=1

(c(k|pai) + αk|pai))− log Γ(

Ki∑

k=1

αk|pai) +

Ki∑

k=1

log Γ(αk|pai)

)
,

(3.15)

cf. Equation 2.28.

Two-part encoding using logistic regression
For classification, it makes sense to only transmit the class labels of given
data D from a domain X = {X0, . . . , Xm}, where X0 is the class variable.
We therefore search for a code of length l2pLR(d0; d1, . . . ,dm), where di is
the ith column of matrix D. From the predictor data, the receiver also
knows the number n of class labels to be transmitted. We further assume,
that we have agreed on the candidate set Y = Y1, . . . , YK of covariates that
may be included in the logistic regression model.

3.2 Two-Part Codes 59

In order to minimize the total length of the transmitted code, we want to
choose a sparse model, avoiding to encode unnecessarily many parameters,
cf. Section 2.7. If we are usingK ′ parameters out of the givenK candidates,
we can encode our choice in

l(K ′) = log(K + 1) + log

(
K

K ′

)
(3.16)

bits, first encoding K ′ according to a uniform distribution over {0, . . . ,K}
and then giving the actual indices of the non-zero parameters. For conve-
nience let us—without loss of generality—assume that the chosen indices
are {0, . . . ,K ′}.

How to optimally encode continuous parameters is discussed in, e.g.,
[Gao 2000]. As we have had some good experience with the α-prior, we
choose to encode the β’s with respect to a discretized Laplace (double
exponential) distribution located around zero with scale one. We have

P (β|ε) =
1

1− 1
2

(
exp ε

2 − exp −ε2
) 1

2

(
exp

ε

2
− exp

−ε
2

)
exp(−|β|), (3.17)

where ε is the precision we use, the first factor comes from the fact that
the receiver knows that a parameter encoded in this way will be non-zero,
and the rest is the integral

∫ β+ ε
2

x=β− ε
2

1

2
exp(−|x|)dx =

1

2

(
exp

ε

2
− exp

−ε
2

)
exp(−|β|) (3.18)

of the chosen distribution over an ε-interval around the value of β. The
corresponding codelength l(β; ε) is the minus logarithm of (3.17). We fur-
ther choose ε to be the inverse of an integer, which needs to be encoded
selfdelimitingly in l(ε) = 2 log 1

ε + 1 bits.
The overall codelength becomes

l2pLR(d0; d1, . . . ,dm)

= l(K ′) + l(ε) +

K′∑

k=1

l(βk; ε)−
n∑

j=1

logPLR(dj0 | Y1(dj), . . . , YK′(dj), β)

(3.19)

where all βk are multiples of ε and the final term is the conditional log-
likelihood under the logistic regression model given by Equation 2.38. It
is now up to the sender to optimize the model with respect to this cost
function.

60 3 Information Theory

For all the examples mentioned here, we have made arbitrary choices. For
instance, for the β’s of the logistic regression model we could have cho-
sen a different distribution, such as a Laplace distribution with variable,
separately encoded scale. More examples will be given in Chapter 4.

We now look at the remaining open problems of model class selection
raised in Section 2.4.

Solution to Problems 4, 6 and 7 (class encoding, overfitting)
As we have seen, even when the number of classes in F is large, there are
ways to encode what we expect to be using in considerably fewer bits than
log |F|, e.g. encoding Bayesian network structures by explicitly listing its
arcs. Note, that also for sparse logistic regression models, K ′ � K, we have
log(K+1)+log

(
K
K′
)
� K, where K is the codelength we need to choose any

of the 2K subsets of the parameters using a uniform distribution. The ’com-
plexity’ of the class is now measured in bits, as is the data log-likelihood, and
therefore the two parts of the code are directly comparable. The combined
codelength trades off data fit against complexity automatically, quantifying
Ockham’s razor and preventing overfitting.

Solution to Problem 5 (the parameter prior, postponed)
We have made some progress by encoding the parameters to specified pre-
cision. The larger the data, the higher the precision, as the relative weight
of the parameter codelength decreases. However, we are still encoding the
parameters with respect to an assumed distribution, effectively a prior. And
while we can now compare different such distributions by the resulting total
codelength, in many cases we can still do much better. Section 3.4 intro-
duces the Normalized Maximum Likelihood (NML) distribution, which
no longer needs a prior at all.

There are always many ways to encode data of any sort, the best being
the one that yields the shortest codelength. It makes sense to ask oneself,
which is the optimal codelength. The length of the shortest decodable
description of a given data is known as the Kolmogorov Complexity
and it comes with extensive theory. In the following section, we briefly
review its main concepts and the implications relevant to this work.

3.3 Kolmogorov Complexity 61

3.3 Kolmogorov Complexity

A good introduction to the theory of Kolmogorov Complexity is provided by
[Li 1997], which we use as the standard reference throughout this section.
In the following, references to this book will be limited to page numbers. For
an introduction, the book is rather lengthy (790 pages!), due to the fact that
the theory of Kolmogorov complexity is very extensive. For this reason, this
section is going to be very brief, hand-wavy at times. For instance, we will
not go into the definition of prefix complexity, the selfdelimiting version of
the Kolmogorov Complexity, even though we are using it in the definition
of the universal distribution. Nonetheless, we include all definitions and
results we will need for motivation of the remainder of this work.

Definition 6 (Identification of strings and natural numbers, p.12)

We identify strings and natural numbers by the following bijection

B∗ −→ N (3.20)

sn . . . s0 7−→
n∑

i=0

(si + 1)2i

This definition differs from standard binary representation (which is not
a bijection) in that leading zeroes do add numerical value. It provides a
natural way of enumerating strings of any length, where the empty string ε
corresponds to the number zero. It also enables us to define the Kolmogorov
complexity (Definition 8) for natural numbers as well as for strings.

Definition 7 (Universal Turing Machine, p.30)
A Turing Machine is a device that manipulates symbols, which can be
zero, one or blank, on a one-dimensional tape according to a finite program—
i.e. set of rules—with a read/write head. At the beginning of a run, the
tape is filled with blanks, except for a finite interval to the right of the
read/write head of the machine. The string in this area, consisting of ze-
roes and ones, is called the input. If the machine halts, then the (finite)
string found on the tape is the output. A Universal Turing Machine
(UTM) is a Turing machine that can emulate the behaviour of any other
Turing machine.

Example 3 The author’s favourite programming language ANSI C (as
most other programming languages) can be viewed as a UTM, since any
Turing machine can be encoded in it. It clarifies thinking to regard univer-
sal Turing machines to simply be programming languages.

62 3 Information Theory

Definition 8 (Kolmogorov Complexity, p.106)
The Kolmogorov Complexity CU (s) of a string s with respect to a uni-
versal Turing machine U is defined as the length of the shortest input—or
program—π to U that prints s and then halts. We write

CU (s) = min
π:U(π)=s

|π|. (3.21)

Kolmogorov complexity is defined only with respect to a UTM U . How-
ever, its dependence on U is bounded by an additive constant, regardless
of the length l(s) of a string s.

Lemma 3 (Uniqueness of the CU (s) up to a constant, p.111)
For any two UTMs U and U ′ and all strings s ∈ B∗ we have

CU ′(s)− cU ′,U ≤ CU (s) ≤ CU ′(s) + cU,U ′ . (3.22)

The constants cU ′,U and cU,U ′ only depend on the universal Turing ma-
chines U and U ′ and are given by the length of a program in language U
to interpret U ′ and vice versa. For this reason, we can speak of the Kol-
mogorov complexity C(s), remembering that it is defined only up to an
additive constant.

Example 4 The string s = {01}1000 of length `(s) = 2000 has low Kol-
mogorov complexity C(s)� 2000 since there is a short program to produce
it:

for(i=0;i<1000;i++)printf("01");

For the same reason the number n = 21000 has low complexity, i.e. contains
little information.

Lemma 4 (Upper bound to C(s), p.108)
There is a constant c such that for all strings s of length `(s)

C(s) ≤ `(s) + c. (3.23)

This constant obviously depends on the chosen UTM, but can be assumed
to be small. The above is easy to see, as the program

printf("%s",s);

provides the required.

Lemma 5 (Almost all strings are incompressible, p.117)
The fraction of strings which are compressible by at least k bits is smaller
than 2−(k−1).

3.3 Kolmogorov Complexity 63

Consider the set of strings of length n. There are 2n such strings, but only
at most 2n−(k−1) − 1 descriptions of length ≤ n− k. This proves the point
for any n, and therefore also for the set of all strings.

This means that, if we generate a random string, e.g. by tossing a
fair coin, it will almost certainly be incompressible. In contrast to that,
our experience tells us that many data we come across in real life are
highly regular and therefore compressible by a large amount. The world
is far from random. Certainly, this holds for natural languages, which are
highly structured, as well as contain a lot of redundancy, as discussed in
[Shannon 1948]. We will exploit this fact in Chapter 4 of this work.

Remark 6 For any string s, its shortest description Lmin(s) (of length
C(s)) is incompressible. Otherwise, there would be a shorter description of
length C(Lmin(s)). Therefore, any compressible description of s is subop-
timal. Shortest descriptions look random.

Lemma 6 (C(s) is incomputable, p.127)
The Kolmogorov complexity C(s) of a given string s cannot be computed.

Consider the expression

The smallest integer which cannot be described in ten words.

Seemingly, this is a contradiction. Have we not just described this number
in ten words? The proof deduces, that the above cannot be a descrip-
tion. Hence, we cannot compute the number from it. More formal proof is
provided by the referenced book.

But how can this be? Given a UTM U , can we not simply run it on all
inputs in parallel, until the shortest program to produce a given string s
has halted? In fact, in this way we can compute a decreasing sequence of
upper bounds for CU (s).

Lemma 7 (Semicomputability of CU (s))
The Kolmogorov Complexity CU (s) can be approximated from above.

This can be seen as follows. Let a UTM U and a string s be given. Run
U(0) for one time step. Then run U(0) and U(1) for one time step each.
Continue to add the next input n and run each program U(0), . . . , U(n)
for another time step, until one of them halts with output U(i) = s. Any
such program provides an upper bound for CU (s) and we can abort all runs
of U(n) with n > i. We only need to execute the programs that remain
running to see whether an even shorter description—a new upper bound

64 3 Information Theory

for CU (s)—can be found. Eventually, this bound will be tight and we will
have found the shortest description of s.

But does this not contradict Lemma 6? Have we not just described a
way to compute CU (s)? Unfortunately, this is not the case. Yes, eventually
we will find the shortest description, but we will not know that we did.
The problem is, that the above procedure never terminates, as some of the
programs never stop running. In effect, they get stuck in infinite loops.

Lemma 8 (The Halting Problem, p.34)
Given a Turing machine T , its halting set is defined as the set of inputs
n for which T (n) eventually halts, HU = {n : T (n) halts}. There is no

program to decide for a given number n whether n
?∈ HU .

Some of the programs of length < CU (s) will therefore run indefinitely.
And since we cannot know whether any of them will halt (with output s),
we never know, whether an even shorter description exists.

This is very much the dilemma in which an MDL researcher finds himself
every day. We have found a description of a given data, but are uncertain
of its actual quality. It is soothing to know that we are not alone, we simply
cannot know whether a shorter description exists. But at least we have an
objective measure of quality, namely the codelength. So we can always
compare and happily shout out: ’mine is shorter than yours!’

Definition 9 (The Universal Distribution, p.273)
We can define the Universal Distribution with respect to a UTM U to
be

PU (s) ∝ 2−KU (s),

where KU (s) is the prefix complexity [p.202], the length of the shortest
selfdelimiting program for U that prints s and halts.

Of course, this distribution cannot be computed. But it has some remark-
able properties. First of all, most random strings coming from it are in fact
compressible. Remember that by Lemma 5 almost all strings are incom-
pressible, yet a universal distribution assigns high probability exactly to
those strings that can be compressed. Therefore it reflects our experience
that many data we encounter are highly regular.

Also, the universal distribution dominates all computable distributions
up to a multiplicative constant, which depends on the length of the program
π for U that generates that distribution.

3.3 Kolmogorov Complexity 65

We can imagine the universe as a universal Turing machine U which
runs on random inputs π from a distribution3 defined by P (π) ∝ 2−`(π).
What we observe will then be the outputs U(π) for those inputs π ∈ HU

on which the machine halts.
There is another remarkable property of the4 universal distribution: it

equalizes worst- and average-case.

Lemma 9 (Worst-case and Average-case are identical, p.290)
With respect to a universal distribution, the average-case performance of
any algorithm with respect to any objective is the same as its worst-case
performance.

The reason for this is, loosely speaking, that being the worst-case input to
the algorithm is almost a description—of constant length—of a string s.
To specify such s, we must only provide its length. For any given length,
the universal distribution reserves a constant fraction of probability mass
for the worst-case, dragging the average-case down to the same level.

Example 5 (Quicksort, p.291)
The sorting algorithm quicksort is known to have a worst-case running time
of O(n2), quadratic in the size n of its input. Its average-case performance
(with respect to a uniform distribution over inputs of size n) is of complexity
O(n log n). It has been noticed though, that the worst-case behaviour does
surface, and more often than one would expect. Under the assumption that
real-world data come from a universal distribution, Lemma 9 explains this
fact.

3In order to define this probability distribution, `(π) needs to be such that∑∞
π=0 2−`(π) <∞, e.g., a selfdelimiting (naive) description.
4we can speak of the universal distribution, defined up to a multiplicative constant,

in the same way that we can speak of the Kolmogorov complexity, cf. Lemma 3.

66 3 Information Theory

3.4 Normalized Maximum Likelihood

As we have seen in the previous section, there are two major drawbacks
to Kolmogorov Complexity. Firstly, it is only defined up to an additive
constant, which depends on the chosen universal Turing machine. This
constant may be of substantial weight, when—instead of asymptotics—we
are interested in the complexity of actual, real-world data of limited size.
Secondly, Kolmogorov Complexity is incomputable. And while it can be
approximated from above, Lemma 7 supplies no way of doing so in practice.

Therefore, instead of using the theoretically optimal minimum descrip-
tion length C(s), which uses a universal Turing machine, we need to retract
to something less universal—but more practical. In the following, we in-
troduce the Stochastic Complexity, which is defined with respect to a
model class of our choice. It can be used to objectively choose among model
classes. Once the model class has been fixed, it also defines a probability
distribution, the Normalized Maximum Likelihood (NML).

In a sense yet to be specified, this is the optimal way of describing the
data, discovering its regularities and predicting unobserved entities. The
quality of this approach will depend—up to the usual constant we deal
with in the theory of Kolmogorov complexity—only on the suitability of
the model family under consideration.

In 1987, Yuri Shtarkov has proposed the following minimax problem:

min
Q∈C

max
|D|=n

log
P̂ (D|C)
Q(D)

= min
Q∈C

max
|D|=n

(
− logQ(D)−

(
− log P̂ (D|C)

))
,

(3.24)
[Shtarkov 1987], where P̂ (D|C) is the maximum likelihood (2.32).

Definition 10 Given a model class C, data D and a distribution Q we call
the quantity

log
P̂ (D|C)
Q(D)

= − logQ(D)− min
Q′∈C

(
− logQ′(D|C)

)
(3.25)

the regret of Q for D relative to C.

The regret is the number of excess bits we need to encode D using Q,
instead of the best possible distribution P̂ (D|C) in C, which we cannot
know before seeing the data.

Let us stare at (3.24) for a while. Given model class C, we play the
minimax game by picking a distribution Q, against an opponent who picks
a data set D of size n and a distribution P̂ ∈ C. We move first, and pick

3.4 Normalized Maximum Likelihood 67

any distribution Q (which need not be a member of C). Then our opponent
picks data D and encodes it with hindsight, using the best compressing
model P̂ (D|C) ∈ C there is in the class. We, in turn, use Q to encode
D, a distribution we had to pick before we knew what we were going to
be using it for. We try to minimize the regret—the difference of the two
codelengths—, i.e. the number of bits we need more than the max-player.
Our opponent tries to maximize the regret. When picking Q, we therefore
minimize the worst-case regret.

Shtarkov also provided the unique solution to (3.24), the Normalized
Maximum Likelihood (NML) distribution (a.k.a. the Shtarkov distribution)
given by

P CNML(D) =
P̂ (D|C)
R(C, n)

, (3.26)

where the normalizing constant R(C, n) depends only on model class C and
data size n. The regret logR(C, n) is therefore the same for any data of
given size, and is also being called the parametric complexity of C for
data size n. It is easy to see that this in fact does solve the minimax
problem. Any distribution Q differing from P CNML is bound to have larger
regret for some data. Since both Q and P CNML are distributions—i.e., sum
to unity—there must be some data D such that Q(D) < P CNML(D) and
therefore Q’s worst-case regret is larger than that of P CNML.

On the other hand, there are also data D′ for which the opposite is true
and Q achieves lower regret. Hence, P CNML is not only optimal in the worst-
case, but also the worst in the best case. The NML distribution spreads the
regret evenly across all data. It is the only distribution that has constant
regret, while any other distribution has larger regret on some, and smaller
regret on other data.

The denominator—normalizing the maximum likelihood—is given by

R(C, n) =
∑

|D′|=n
P̂ (D′|C). (3.27)

The codelength

− logP CNML(D) = − log P̂ (D|C) + logR(C, n) (3.28)

the NML distribution assigns to data D is called the stochastic complex-
ity of D relative to C, [Rissanen 1987].

Remark 7 This definition of the NML distribution is sufficient for the
multivariate multinomial data domain X we consider in this thesis. In
general, PNML(D|C) can also be a probability density, in which case R(C, n)

68 3 Information Theory

is given by an integral over all appropriate data. In many such cases—
as well as in many cases of countably infinite data range—R(C, n) can be
infinite and we have to restrict the data domain in order to define the
stochastic complexity. But where it is defined, it still solves the minimax
problem (which may turn into an inf-sup problem), see [Rissanen 2007].
For the scope of this work, the above is well-defined.

Remark 8 The NML distribution, like the marginal likelihood distribution
for Bayesian networks, mimics the behaviour of all distributions M ∈ C.
But not with respect to an assumed prior distribution, but worst-case opti-
mally relative to the model class. Unlike the marginal likelihood, the NML
distribution does not share the parametric structure of C, and therefore it
lies outside of the model class it mimics. In fact, it is a non-parametric
distribution altogether. Nonetheless we can use it for prediction, by using
the plug-in predictor

P CNML(dn+1|D) =
P CNML(D ∪ dn+1)∑

d′n+1
P CNML(D ∪ d′n+1)

=
P̂ (D ∪ dn+1|C)∑

d′n+1
P̂ (D ∪ d′n+1|C)

. (3.29)

Solution to Problem 5 (no parameter prior)
Being non-parametric, the NML distribution very elegantly avoids the prob-
lem of finding a suitable parameter prior: it does not need any.

In many cases, the NML distribution is the best we can do when we are
using model class C. Not knowing the data generating process, we aim to
minimize the expected codelength. But with respect to which distribution?
If there were a generating distribution and further it would be known to us,
then there would be nothing to do. By Shannon’s theorem, this distribution
itself is the one we should use to encode the data, the expected codelength
being its entropy. Instead, we may want assume that data come from
a universal distribution which, of course, cannot be computed. For this
reason, we retract to the use of a model class C, of which we hope that it is
able to capture the regularities appearing in D, or at least a large portion
of them. Worst-case optimality assures, that we have taken into account all
regularities that C can capture. Remember that, with respect to a universal
distribution, the worst-case is the average-case.

Worst-case optimality with respect to the regret therefore means average-
case minimal codelength with respect to the universal distribution. While

3.4 Normalized Maximum Likelihood 69

the assumption that data come from a universal distribution is debatable,
it still is a natural choice when there is no better candidate available. It is
also a safe choice, as the universal distribution dominates any (computable)
prior distribution we might have chosen. This, of course, only up to a con-
stant, which depends on both the prior distribution it is compared against
and the UTM with respect to which it is defined. Successful applications of
the NML distribution in histogram density estimation [Kontkanen 2007b],
image denoising [Roos 2005a], clustering [Kontkanen 2006], DNA sequence
compression [Korodi 2005] and other areas have given evidence for this.

Naturally, there will also be regularities that C cannot capture, and a
bad choice of model class yields a bad NML distribution. But NML can
also be used for model class selection, by choosing the class within a family
F which minimizes

lCNML(D|n) = l(C)− logP CNML(D). (3.30)

As in Section 3.2, we need to first encode the model class itself, before the
receiver knows the NML distribution we will be using.

The model class C chosen in this way is the one which best suits D
and therefore, also the corresponding NML distribution P CNML is the most
meaningful among all NML distributions for F .

70 3 Information Theory

3.5 More Properties of the NML Distribution

Invariance to parameter transformation
By definition—which does not employ the parametric form of model class
C— the NML distribution is invariant to any sort of parameter transfor-
mation. For instance, it is automatically identical for all Bayesian network
structures belonging to the same equivalence class.

The regret as a penalty term
Let us unfold Equation 3.30 to

lCNML(D|n) = l(C)− log P̂ (D|C) + log
∑

|D′|=n
P̂ (D′|C) (3.31)

and observe that it looks—apart from the sign, as now we are minimizing—a
lot like Equation 2.31, the Bayesian penalized model class selection crite-
rion. The NML cost (i.e. the negative penalty) then is

costNML(C|n) = l(C) + log
∑

|D′|=n
P̂ (D′|C). (3.32)

The first term—l(C)—is not actually related to the NML distribution, it
simply comes from the encoding of the model class we have chosen. The
second term—the parametric complexity (regret) of C—measures the com-
plexity of C in a very sensible way, as the sum over the maximum likeli-
hoods assigned to any data (of given size) we might have observed. The
NML model selection criterion (3.31) therefore chooses a model class C that
allows for good fit of D relative to the fit of any data D′.

The regret, as does the penalty term of the Bayesian information crite-
rion, depends on the data size n. In fact, BIC has been viewed as an approx-
imation to the stochastic complexity, see [Kontkanen 2003], but found to be
inferior to other approximations. Also, BIC disregards the class encoding
term l(C), which can make a crucial difference [Roos 2009].

Conditional NML
For supervised learning tasks, where the receiver is assumed to be aware of
the predictor data d1, . . . ,dm (cf. Eq. 3.19) we can define the conditional
NML distribution

P CNML(d0|d1, . . . ,dm) =
P̂ (d0|d1, . . . ,dm, C)∑

|d̄0|=n P̂ (d̄0|d1, . . . ,dm, C)
, (3.33)

3.5 More Properties of the NML Distribution 71

where P̂ (d0|d1, . . . ,dm) is now the conditional maximum likelihood. In
this way, we get a model selection criterion

lNML
C (d0|d1, . . . ,dm)

= l(C)− log P̂ (d0|d1, . . . ,dm, C) + log
∑

|d̄0|=n
P̂ (d̄0|d1, . . . ,dm, C) (3.34)

where the sum of the regret only goes over that part of the data in which
we are interested.

NML to deal with sampling bias
The situation in which the data itself has an influence on the fact whether
or not it will be observed by us, is known as the sampling bias. In such
case, we often still want to model the underlying process that generated
the data in the first place, excluding the sampling bias. Then we should—
when we want to minimize the expected MDL codelength—weight the data
D by their probability w(D) of being observed, to arrive at an unbiased
(weighted) NML distribution

P C,wNML(D) =
w(D)P̂ (D|C)∑

D′ w(D′)P̂ (D′|C)
. (3.35)

This, of course, requires that we have a fairly good understanding of the
nature of the involved sampling bias. [Grünwald 2009] investigates such
problem, in which statistical data is to be used as evidence in a court of
law. Part of this same data had led to the trial in the first place, introducing
sampling bias: had the data been different, the case might have never been
raised. Grünwald studies several different approaches, all leading to the
conclusion that the evidence that had led to police investigation should have
lesser weight in court than the evidence gathered during the investigation.

The basic assumption has been, that the police got involved only when
the observed data D had become sufficiently extreme, that is, a function
f(D) had exceeded some threshold T . The point of time when that had
happened gives us a fairly good estimate of T . The biasing weights are
therefore binary,

w(D) =

{
1 if f(D) ≥ T
0 else

. (3.36)

The unbiased NML distribution is then similar to the standard NML, only
differing from it by a restriction in the sum of the regret

P C,TNML(D) =
P̂ (D|C)∑

D′:f(D′)≥T P̂ (D′|C)
. (3.37)

72 3 Information Theory

The larger the threshold T , the smaller the T -restricted regret. The T -
restricted NML distribution assigns higher probability to D with increasing
T , as it is a distribution over fewer possible data the higher the threshold
becomes. Higher probability in turn means less decisive evidence in a court.
This is in accordance with Grünwald’s findings.

Computability
Unlike the universal distribution, NML is computable or, in case of continu-
ous data, can be approximated to arbitrary precision. But its computation
is demanding, in many cases forbiddingly so. First, we need to be able
to efficiently compute the maximum likelihood P̂ (D|C) and then, for the
regret, an exponential sum (resp. multidimensional integral) over all data
we might have observed. This means that straightforward computation
takes exponential time. In some cases, however, we can calculate the NML
distribution in polynomial time, in a less brute-force way.

We have seen that we can hardly expect to ever get closer to the uni-
versal distribution than with NML. But whether we can compute the NML
distribution efficiently, still depends on the model class under consideration.
Section 3.6 reviews recent advances in NML computation.

3.6 Computing the NML Distribution 73

3.6 Computing the NML Distribution

Computation through the sufficient statistics
We cannot efficiently compute the parametric complexity straightforwardly,
as it involves an exponential sum or a multidimensional integral. However,
the maximum likelihood under model class C depends on the data D only
through its counts, see Section 2.2. Grouping the possible data D′ of size
n into sets corresponding to the same count vectors can therefore enable
us to calculate the regret more efficiently.

In this way, [Rissanen 2000] has developed an NML criterion for linear
regression and applied it to denoising problems. While the (worst-case)
regret itself is infinite in this case, multiple levels of bounding the involved
integral and renormalization lead to a criterion which is independent of the
chosen bounds, as their influence on the resulting codelength is constant
with respect to the model class. Calculation of this criterion can be done
in linear time. Moreover, for orthonormal basis functions, it can be shown
that the class which optimizes this criterion retains, out of n coefficients,
the largest k for some 0 ≤ k ≤ n. Therefore we can find the NML-optimal
model in time O(n log n), the computational complexity of ordering the
coefficients. This has been exploited in speech signal [Rissanen 2000] and
image [Roos 2005a] denoising.

For a single multinomial variable of cardinality K (cf. Section 2.2),
[Kontkanen 2003] has proposed an algorithm that computes the NML dis-
tribution with time complexity O(nK−1). The same paper discovered a
recursive formula, which improves this result to O(n2 logK).

For Bayesian networks of multiple multinomial variables, the situation
becomes more complicated. Unlike the marginal likelihood (Eq. 2.28), the
NML distribution does not factorize into local terms for each variable.
However, for the naive Bayes network structure (e.g. top left network in
Figure 2.6), [Kontkanen 2005] introduces an algorithm of time complexity
O(n2 · logK0), where K0 is the cardinality of the root node, again using a
recursion formula. Once more, the same paper immediately improves upon
its own result, with a fast Fourier transform to O(n log n ·K0).

Publication II of this thesis developed an algorithm to compute the
normalized maximum likelihood for Bayesian forests, Bayesian networks in
which any node can have at most one parent (cf. Section 2.6). Its time
complexity is O(nK

∗−1), where K∗ = maxi:∃(j:i=Paj)(Ki ·KPai). Therefore
the algorithm is polynomial in the data size n, but the degree of this poly-
nomial depends on the maximal product of the cardinalities of an inner
node (one that has a parent and at least one child) and its parent. This
clearly is tolerable only when these cardinalities are small, e.g. for binary

74 3 Information Theory

variables. The reason for this behaviour lies in the non-factorizing nature
of the regret. The bottleneck of the algorithm is at the inner nodes of the
forest. Here, the problem of summing over all possible data D′ of size n—
weighted by their contribution to the regret—is equivalent to the problem
of counting non-negative integer matrices with given marginals (row- and
column-sums). The latter has been proven to be #P-hard, [Dyer 1997],
which casts strong doubt on the existence of an algorithm that would be
polynomial with respect to not only n, but also the cardinalities Ki of the
involved multinomials.

Computation using generating functions
In the year following the appearance of Publication II, [Mononen 2008]
developed a slightly faster algorithm for the same problem. However, its
time complexity is of similar order and the algorithm is not polynomial in
all input quantities. Interestingly, Mononen’s algorithm takes an entirely
different approach, employing generating functions [Flajolet 2009].

The idea to apply generating functions to NML calculation problems is
due to Petri Kontkanen, who developed a linear-time algorithm for compu-
tation of the (single variable) multinomial NML [Kontkanen 2007a]. This
has been exploited in histogram density estimation in [Kontkanen 2007b].
For another application, [Mononen 2007]—slightly—improved the time com-
plexity of NML computation for the naive Bayes network structure to
O(n2), no longer depending on the cardinalities of the involved variables.

Approximations
While efficient algorithms for exact computation of the stochastic com-
plexity have been developed—and successfully applied—for a number of
relatively simple model classes, it remains a fact that NML computation
is infeasible for many model classes that we would like to use. This gives
rise to the question, whether in these cases we can at least calculate good
approximations to this score.

As mentioned earlier, one can view the Bayesian information criterion
(BIC, [Schwarz 1978]) as such an approximation. [Kontkanen 2003] com-
pares it to two more refined approximations—Rissanen’s asymptotic expan-
sion [Rissanen 1996] and the Szpankowski approximation—in the cases of a
single multinomial variable (with varying cardinalities) and the naive Bayes
network structure. The latter approximation Kontkanen derives based on
Szpankowski’s theorem on the redundancy rate for memoryless sources
[Szpankowski 2001], once more using the generating function trick. In all
reported situations, the Szpankowski approximation turns out to be most

3.6 Computing the NML Distribution 75

accurate, while Rissanen’s asymptotic expansion is a better approximation
than BIC.

For the case of general Bayesian networks—including the special case
of Bayesian forests—the problem with NML computation is the fact that
the sum of the regret does not factorize into local scores at each variable.
[Myllymäki 2008] proposes to use the factorized Normalized Maximum
Likelihood (fNML), an approximation to NML which encodes the data
columnwise and normalizes each column separately, resulting in a code-
length of

lCfNML(D|n) =
m∑

i=1

lCNML(di|dPai
, n), (3.38)

with the definitions of Equation 3.26. This score can easily be computed,
and is reported to perform favourably as compared to the marginal like-
lihood score. It remains unclear, how close to NML its factorized version
fNML comes, since NML itself cannot be computed.

A similar approach is taken in [Silander 2009]. The sequential Nor-
malized Maximum Likelihood (sNML), encodes the data rowwise and
normalizes each sample separately:

lCsNML(D|n) =
n∑

j=1

lCNML(dj|d1, . . . ,dj−1, n). (3.39)

Sequential NML can be seen as a prequential score in the same way that
Bayesian marginal likelihood can. But unlike the marginal likelihood,
sNML does depend on the ordering of the encoded data samples, even
when the chosen model class makes the i.i.d. assumption.

We may also combine fNML and sNML (’fsNML’), and normalize after
the encoding of each matrix entry. In all cases, each normalizing sum only
goes over the parts of the data that appear to the left of the conditioning
bar, which greatly simplifies computation.

The idea to normalize in smaller chunks, in order to make the result-
ing score efficiently computable, makes NML-derived scores applicable to a
wide range of model classes. Sequential NML, for instance, has been suc-
cessfully applied to regression problems [Rissanen 2010]. When deviating
from the standard definition of NML in this way, the resulting codelength
is no longer worst-case optimal nor does the regret (or, rather, the series of
local regrets) remain independent of the data at hand. For this reason, we
can no longer speak of the parametric complexity of a model class. How-
ever, methods derived in this fashion seem to work very well in practice.

76 3 Information Theory

3.7 Summary

We have seen, how Shannon’s source coding theorem and Kraft’s inequality
tie probabilities to codelenghts. Maximum probability becomes minimum
codelength. The MDL principle is based on this observation, transforming
the problem of data modeling into a problem of data compression.

Already in its simplest form—the so-called two-part codes—the MDL
principle solves most of the problems we have encountered in Bayesian
model class selection. Others are greatly simplified, made more explicit.
Two-part codes offer a theoretically sound approach to data encoding, and
enable us to avoid many pitfalls common in data modeling. We can compare
any models (codes), regardless of their parametric structure, simply by
comparing their compression capabilities. This can be done using only the
data at hand, without any assumptions regarding the source they might
have come from.

When we require an encoding to be universal in the sense that it can
describe any given data (of appropriate form), then the shortest codelength
we can achieve is, by definition, the Kolmogorov complexity. As its def-
inition involves the use of a universal Turing machine, which may freely
be chosen, Kolmogorov complexity is only defined up to an additive con-
stant. Furthermore, it is incomputable. The theory behind it, however, has
some important practical implications. It leads to the NML distribution,
which often gives us the shortest codelength we can achieve in practice.
This non-parametric distribution simulates the use of all models within a
given model class—without being a member of it—using no prior on the
model parameters. It can be also used as an objective tool to choose among
competing model classes. Model class selection then boils down to the def-
inition of a suitable model family to choose from, and computation of the
stochastic complexity.

The NML distribution can be computed efficiently only for a few rel-
atively simple model classes. But these classes do appear in real-world
problems—often as subproblems—and a number of successful NML ap-
plications have been reported. In case we cannot compute the stochastic
complexity exactly, this is no reason to throw in the towel. A variety of
approximations have been developed and put to the test with encouraging
results.

The following chapter introduces applications of MDL methods in the
field of computational etymology, the study of the history of words. We are
interested in phonetic sound change over time, across a family of kindred
languages.

Chapter 4

Etymology

“Eurgh!”
—Arthur Dent, using a babel fish for the first time.

4.1 Motivation

Etymology is the study of the history of words. Our focus is on cross-
language change of sounds, the way phonetics have developed over time
within a family of languages descending from a common ancestor. Typi-
cally, this ancestor language is not known to us, as it dates far back into
ancient past. The data serving as input to our methods takes on the form
of cognate sets, groups of related words from kindred languages, as de-
scribed in more detail in Section 4.2.

We introduce several models to investigate and evaluate these cognate
sets. Our main point of departure is alignment of etymological data,
i.e., identifying the symbols or sounds that correspond. In etymology,
the alignment problem is different from alignment in Machine Translation
[Och 2003], which seeks correspondence between words in the source and
target languages. While there is some ambiguity also on the level of words,
sounds appear in a much wider range of context. Moreover, in our problem
setting we do not have a dictionary available to help in mapping sounds.
Instead, we want to discover these correspondences, together with the con-
texts they appear in.

Given a raw set of etymological data, we aim to find the best alignment,
in a sense yet to specified. Motivation for this starting point will be given
in Section 4.3. As it turns out, our alignment models also include the rules
of sound correspondence we are after, as it is these rules that enable us to

77

78 4 Etymology

compress the data. The models, model classes and families we develop to
this end are described in detail in Sections 4.4 and 4.5.

Sets of etymological data are found in digital etymological databases,
such as ones we use for the Uralic language family. A database is typically
organized into cognate sets. Each element of such cognate set is a word in
one of the member languages of the family under consideration, all cognates
forming such set are posited to be derived from a common origin and thus
to be genetically related. This origin is some (unknown) word form in
the assumed common ancestor language. The cognate sets are formed by
linguists, and often there is debate about their correctness. While some
word forms are clearly related, others are more distant, believed to belong
to the set by some linguists, rejected by others. Each cognate set is—
simplifyingly—assumed to have evolved from a protoform in a common
ancestor language in a straight line, not to have been lost and reintroduced
by borrowing. The languages in the family form a tree that describes their
history of separation. This is a standard assumption and lean words, where
detected, are not being included in the cognate sets.

Computational etymology poses several problems, including the discov-
ery of regular sound correspondences across languages in a given language
family and determination of genetic relations among groups of languages,
both of which are subject of this work. Problems we only brush are the
discovery of cognate sets and reconstruction of unobserved word forms.
The latter splits further into diachronic reconstruction, i.e. reconstruction
of protoforms for a hypothetical ancestor language, and synchronic recon-
struction of word forms that are missing from a known language.

As we develop our alignment models at the sound or symbol level, we
explicitly model correspondence of sounds. In the process of evaluation of
these models, we also arrive at modeling relationships among entire lan-
guages within the family. Section 4.7 describes ways of inferring phyloge-
netic language trees, describing the assumed genetic interrelations between
the languages in the family, from the models we have learned. Construction
of phylogenies is studied extensively, e.g., by [Nakhleh 2005, Ringe 2002,
Barbançon 2009]. Their work differs from ours in that it operates on man-
ually precompiled sets of characters, which capture divergent features of
languages within the family, whereas we operate at the level of sounds
within words and cognate sets.

The problem of cognate discovery is addressed in [Bouchard-Côté 2009,
Kondrak 2004, Kessler 2001]. Here we consider the etymological data—
cognate sets—to be given. Different data sets may include different—even
conflicting—cognate sets. We start out from a set of etymological data (or

4.1 Motivation 79

more than one such set) for a language family as given. Our focus is on the
principle of recurrent sound correspondence, as in much of the literature,
including [Kondrak 2002, Kondrak 2003]. This means that we assume that
whenever a sound has changed in some language, then this has happened
in some specific context throughout the entire language.

Reconstruction, such as the protoforms given in [Rédei 1991], seems to
be the most demanding of the fore-mentioned problems. To this date, it
has been done purely by hand, essentially by making educated guesses. Our
imputation method, introduced in Section 4.6, provides a first approach to
automatically reconstruct missing word forms of known languages. Recon-
struction of protoforms is a subject of future research. We do believe, that
the MDL principle, together with a suitably adjusted imputation proce-
dure, can provide a means to this end.

Comparative and historical linguists have worked on problems of ety-
mology for centuries. Their methods have been applied to various language
families with immense labour. The obtained results have been subject to
debate and disagreement, as every linguist has introduced her personal
expertise and—inevitably—bias and subjectivity.

Computational linguistics provide means to analyze data far more ef-
ficiently. Moreover, only some major language families have extensively
been studied from the etymological perspective, while many others have
not. Language families such as Indo-European have received more atten-
tion than others and have been studied in greater detail, mainly because
there is more relevant data that has been collected, and this data has been
available to scholars for a longer time. For language families that have
been paid lesser attention, automatic analysis will allow linguists to obtain
results quickly, providing a foundation for further, more detailed investi-
gation. We have been the first to study the Uralic language family by
computational means, but no longer are we alone [Honkola 2013].

Minimizing description length also adds a level of objectivity to the
analysis, as we can measure performance in bits. Of course the data it-
self, as well as the choice of the model family under consideration, remain
choices to be made—an inescapable source of subjectiveness. Our methods
may uncover previously unrecognized regularities, but even in case they
only validate previously established theories, this is a useful result. Be-
cause computational approaches differ in nature from traditional linguistic
methods, a matching result always serves as a non-trivial, independent con-
firmation of correctness of traditional methods, or adds its voice to an open
debate.

Computational methods can provide valuable tools for the etymological

80 4 Etymology

community. From a linguistic point of view, the methods can be judged by
how well they model certain aspects of etymology, and by whether the auto-
matic analysis produces results that match theories established by manual
analysis. Imputation—reconstruction of previously deleted cognates—also
provides an intuitive method of model quality evaluation, much like cross-
validation in statistics.

From an information-theoretic point of view, we evaluate a model (class)
by the codelength it achieves. We will see that codelength correlates well
with the above linguistic criteria, proving our approach to be consistent.

4.2 The Data 81

4.2 The Data

Our methods are applicable to any reasonable collection of cognate sets
from any language family. In this work we focus on the Uralic language
family, using the StarLing Uralic database [Starostin 2005] originally based
on [Rédei 1991]. So far, we have also run our algorithms on Suomen Sanojen
Alkuperä (SSA, ’The Origin of Finnish Words’, [Itkonen 2000]), a Finnish-
centered etymological dictionary, and the StarLing Turkic database. For
simplicity, we present our results—as well as all example alignments—only
for StarLing Uralic, on which we will take a closer look in the following.

The StarLing Uralic database consists of 1898 cognate sets containing
cognates from 15 languages. In this work, we restrict the data to the 10
languages from the finno-ugric branch, namely Estonian (EST), Finnish
(FIN), Khanty (KHN), Komi (KOM), Mansi (MAN), Mari (MAR),
Mordovian (MRD), Saami (SAA), Udmurt (UDM) and Hungarian
(UGR). Each cognate set is derived from an entry in [Rédei 1991], an ex-
ample of which is given in Figure 4.1. For each language, there may be mul-
tiple word forms from different dialects given. The data is mostly stemmed,
containing relatively little extraneous morphological material. This is not
the case with all data.

Figure 4.1: Original data entry corresponding to the Finnish word stem
juokse- (’to run’) in [Rédei 1991].

StarLing compiles these entries into a more digestible format, an ex-
ample is given in Figure 4.2. Entries subject to disagreement among lin-
guists are indicated by (one or more) question marks. In the example

82 4 Etymology

of Figures 4.1–4.2, the Hungarian form ’́ıv’ is questionable according to
[Rédei 1991]. The StarLing database, however, marks all other entries as
uncertain.

Figure 4.2: Preprocessed data entry as found in [Starostin 2005].

Finally, we simplify this further by arranging the data into a matrix,
parts of which are shown in Figure 4.3. We ignore question marks (for now)
and restrict each language to its most prominent dialect1. The resulting
matrix has many missing entries, as cognate sets need not contain entries for
all languages in the family. In fact, there are very few that do. Missing word
forms are marked by dashes. Each language has its own alphabet, which
can be either print or phonetic alphabets, depending on the database. We
prefer the latter, since we are interested in sound change, not orthographic
conventions.

...

...

Figure 4.3: Part of the cognate matrix serving as input to our methods.

1We have also run our algorithms on data including the multiple dialects, but the aim
here is to just give one example of a possible input.

4.2 The Data 83

Our basic assumption is, that phonetic change is a regular process. In
other words, if along the way from an ancestor to the observed language
some sound has undergone change, say, an ’a’ changing into an ’o’, then
this happens throughout the language. Any such change may be context-
dependent, but never random. But if the underlying process is in fact
deterministic, then why use probabilistic models in the first place?

First of all, there are several sources of noise present in the data. It
has been compiled by linguists with subjective views, and in many cases
these views do conflict. There are also ’dubious’ entries, indicated with a
question mark (or multiple ones), which may be due to a weak semantic link,
a violation of expected phonetic regularity, or a little of both. Even where
cognate correspondence is undisputed, it may still only be partial. There
may be morphological information contained in a word form, that simply
does not correspond. The StarLing data has been stemmed (mostly), but
that still leaves the problem of ossification. By this we mean that a morph
that once carried meaning of its own has over time become an integral part
of a word and therefore can no longer be stemmed away.

Secondly, we cannot expect to be able to recover all relevant, determin-
istic rules of sound change from the data. Over thousands of years many
such changes will have occurred, back and forth, each single change condi-
tioned on context which might be long lost, as it has undergone changes of
its own. An additional source of complexity in language evolution is known
as blocking . Some phonetic change occuring in a language may have excep-
tions where some word form would become indistinguishable from another
existing word, in which case the unaltered form is preserved. Clearly, we
cannot learn such mechanism from the data we are using. Moreover, the
data is rather small. For some language pairs there are only a few hun-
dred cognate sets with entries for both languages. Some symbols within a
phonetic alphabet may only appear once or twice in the whole data.

These considerations give motivation to use probabilistic models for this
data. Our models need to be capable of allowing exceptions from each rule
implicit to them, since rules can be expected to hold only to some degree.

84 4 Etymology

4.3 The Alignment Problem

While etymological datasets, containing cognate sets, are readily available,
the alignment at the sound level between two or more word forms in a
cognate set is almost never given explicitly, as is the case with StarLing.

Instead, in linguistic handbooks one finds general rules of derivation
from a parent language to daughter languages. The handbook, in turn,
typically provides a handful of examples of the application of each rule,
at best also mentioning how pervasive the rule is, i.e., whether there are
exceptions—examples that contradict the rule. The actual alignment for
most related forms in the database are therefore implicit to these rules.

This creates several immediate problems. First, the user of the database
is left to her own devices to determine precisely how any two or more words
in a cognate set are related—which rules of derivation give rise to the
observed forms? By this we mean a full sound-by-sound accounting of
relationships in the observed word forms, leaving no sound unexplained.

Secondly, the presented word forms may contain morphological ma-
terial that is etymologically unrelated. Some databases give ’dictionary’
forms, which usually contain extraneous morphological affixes, and thereby
obscure which subpart of a given word form stand in etymological rela-
tionship with other members in the cognate set, and which do not. While
some affixes may be ’obvious’, many are not. As mentioned in Section 4.2,
the StarLing Uralic database is relatively clean in this respect, but it does
contain a lot of ossified affixes, parts of the given cognates that need not
etymologically relate.

Most seriously, the posited rules are usually insufficient to explain the
totality of the observed data. This is due to the complex nature of the un-
derlying derivation processes, which limits the ability of database creators
to capture the regularities in full, and to make them explicit as rules. The
given rules may also have exceptions that are not mentioned (or acknowl-
edged) in the handbooks, yielding incomplete explanation.

In fact, rules given in handbooks are usually idealized abstractions,
covering only the common examples of relationship. Typically, the rules
described apply cleanly only in the simplest and most straightforward ex-
amples, while in much of the data the rules have unexplained exceptions,
or fail to hold altogether. While some amount of exceptions or failure may
be insufficient grounds to categorically dismiss a rule, we must also account
for the exceptions.

A central idea behind our automatic analysis is to extract the rules of
correspondence directly from the data, with no side information given. We
use etymological handbooks such as [Lytkin 1973, Sinor 1997] only to verify

4.3 The Alignment Problem 85

our results, not to guide learning. Therefore our results are independent
of linguistic bias, as far as this bias is not already part of the data. In
other words, all rules we learn are inherent in the given corpus. Unlike,
e.g., [Kondrak 2004] we also utterly disregard the semantics of the involved
cognates.

Given a set of cognates, we know (or assume) that its members are
genetically related, in some way and at least in some parts. But this rela-
tion is not given on a sound-by-sound level, only on the level of complete
words. Since we are interested in phonetic change, we need to first find
out which sounds correspond to each other. This is the alignment prob-
lem. In its simplest form, we align single sounds for a pair of languages.
We equate sounds and symbols, assuming phonetic notation. We speak of
source and target languages, even though in many cases our models—being
symmetric—do not require this distinction. Let Σ be the source and T the
target alphabets, |Σ| and |T | their respective sizes.

At the symbol level, an alignment is then a pair (σ : τ) ∈ Σ × T
consisting of a source symbol σ and a target symbol τ . We call such pair
an event in order to distinguish it from an alignment of single cognates
or the whole corpus. Some symbols may align with themselves (σ = τ),
while others may have undergone changes during the time the two related
languages have been evolving separately (σ 6= τ). Clearly, with this type of
one-to-one alignment alone we cannot align a source word σ of length |σ|
with a target word τ of a different length |τ | 6= |σ|. We also need insertions
and deletions, for which reason we augment both alphabets with an empty
symbol, denoted by a dot. We denote the augmented alphabets Σ. and T..

Typically, a sound will behave in a number of different ways depending
on the context it appears in. For example, some symbol σ from the source
alphabet maps to the same sound τ1 = σ in the target alphabet in most
cases, but changes into a different sound τ2 6= σ inbetween vowels and gets
deleted at the end of a word. The number of different choices for each
sound can be assumed to be small.

We can now align word pairs such as (vuosi, al), meaning “year” in
Finnish and Khanty, in any of the following

v u o s i
| | | | |
a l . . .

v u o s i
| | | | |
. . a l .

v u o . s i
| | | | | |
. a . l . .

as well as another 58 ways we have counted.

The rightmost alignment, for example, consists of the symbol pairs (v:.),

86 4 Etymology

(u:a), (o:.), (.:l), (s:.) and (i:.). Our objective is to find the best alignment
for each pair (or set) of cognates in the data.

Applying the MDL principle, the goodness criterion will be the overall
number of bits needed to encode the aligned data. We will verify in several
ways that this in fact yields good models, as evaluated from a linguistic
point of view.

The models presented in the following have been introduced in Publica-
tions III–VI. However, we take the freedom to deviate from these papers—
both in content and in notation—whenever this seems to make the concepts
more clear or more recent results suggest to do so.

4.4 Baseline Model and Extensions 87

4.4 Baseline Model and Extensions

Following the MDL paradigm, we need to encode the complete data D in
order to communicate it via a channel. As it is not meaningful to speak of
an alignment without the underlying (unaligned) data D, we also speak of
the alignment D. For a pair of languages, we want to minimize the code
length of the ordered pairs of cognates together with the alignments we
have chosen for each. Sending the pairs in order is an arbitrary choice with
no effect on the alignments, the codelength differs from that of unordered
transmission by the additive constant log n!, where n is the number of
cognates that source and target language share. For the receiver to be
able to decode the message, the word boundaries must also be encoded.
To this end we add the special character ’$’ to both alphabets, meaning
’end of word’, the augmented alphabets we denote by Σ$. and T$.. For
the simplest of our model classes, which we call the ’baseline model’, this
character will only appear in the cognate-terminating event ($: $). In some
cases we will also need a symbol to denote the beginning of each word, we
choose the character ’#’. For the baseline model, we do not need to encode
the cognate-initial event (# : #), as we know where it will occur: at the
beginning of the code, as well as after each event ($: $) as long as we have
not yet communicated all n cognate pairs, but not elsewhere.

4.4.1 Baseline Model

Our simplest model class for the alignment problem considers the event
space E = |Σ.|× |T.| ∪ ($: $) \ (. : .) as a multinomial variable of cardinality
K = |E| = |Σ.| · |T.|. The end-of-word symbol can only align with itself,
while simultaneous deletion and insertion is not meaningful in this context,
as it could only increase codelength.

We encode the events using marginal likelihood with uniform prior. For
an alignment D = ((σ1 : τ 1), . . . , (σn : τn)) of D = ((σ1, τ 1), . . . , (σn, τn))
with event counts c(e) we therefore obtain a codelength of

lKMarLi(D) = −
∑

e∈E
log c(e)! + log (|D|+K − 1)!− log(K − 1)!, (4.1)

where
|D| =

∑

e∈E
c(e) (4.2)

is the total number of events in D, cf. Equation 2.16. Implicitly we have
assumed that the number n of common cognates is known to the receiver,
such that the end of the message is unambiguous during decoding. Of

88 4 Etymology

course, we could also start the message with a selfdelimiting encoding of n.
This would add a constant to the codelength. Since this has no influence
on the resulting model, we choose to ignore this term.

4.4.2 Learning Procedure

We learn an alignment of the corpus—all cognate pairs present in both
languages under consideration—in the following way. Starting from a ran-
dom alignment of all cognate pairs we iteratively realign one cognate pair
(σi, τ i) at a time. We first subtract all involved events from the counts.
These decreased counts we denote c−i and, for notational ease, the aligned
data excluding the ith cognate pair D−i. We then align (σi, τ i) optimally
using dynamic programming [Bellman 1957] and reinsert the new events
into the count vector. Note that this alignment is optimal only with re-
spect to the ’frozen’ model, based on D−i. For the complete D-model it is
optimal in most cases, but in some cases only a good approximation to the
optimum.

Dynamic programming requires that we find intermediate states, for
which it does not matter (in terms of cost) how we got there. In our case,
these states mark a point at which we have encoded the first u symbols of
the source word and the first v symbols of the target word. We arrange
these states in an alignment matrix A of size (|σi| + 2) · (|τ i| + 2). Each
cell stores the minimal achievable codelength of the corresponding partial
alignment, recursively defined by

a00 = 0
au0 = au−1,0 + L((σu : .)|D−i) for u ≥ 1
a0v = a0,v−1 + L((. : τv)|D−i) for v ≥ 1

auv = min

au−1,v + L((σu : .)|D−i)
au,v−1 + L((. : τv)|D−i)

au−1,v−1 + L((σu : τv)|D−i)

 for u, v ≥ 1

(4.3)
and for u, v ≥ 1 also which of the three choices (deletion, insertion, one-
to-one alignment) achieves the minimum. For fixed i, we denote the word
lengths be N = |σi| and M = |τ i|. The bottom rightmost cell aN+1,M+1

can only be reached from cell aNM . This transition corresponds to event
($: $). Cells au,M+1 for u = 1..N and aN+1,v for v = 1..M are disallowed,
as any path through them would correspond to an alignment containing an
event involving an end-of-word symbol together with some other symbol.
Cell aN+1,M+1 then contains the cost of the best alignment, backtracking
through A gives the alignment itself. Figure 4.4 visualizes the alignment
matrix.

4.4 Baseline Model and Extensions 89

τ1 . . . τv−1 τv . . . τM $

0 x

σ1 x

. . . x

σu−1 au−1,v−1 au−1,v x

↘ ↓
σu au,v−1 → auv x

. . . x

σN x

↘
$ x x x x x x x �

Figure 4.4: Alignment matrix A. Each cell auv stores the codelength of
the most probable alignment and a pointer to the cell we have come from
to achieve it. Word beginnings are marked ’#’, word endings ’$’ and cells
marked ’x’ are disallowed.

The cost of moving from one cell to another (to the right, down, or both)
is given by the increase in codelength caused by adding the corresponding
event e. These differences in codelength are

l(e|D−i) = l(D−i ∪ {e})− l(D−i) (4.4)

= − log(c−i(e) + 1) + log(|D−i|+K), (4.5)

corresponding to transition probabilities

P (e|D−i) = 2−l(e|D
−i) =

c−i(e) + 1

|D−i|+K
. (4.6)

We realign all cognate pairs and update the model accordingly until
the algorithm converges. Because this greedy method tends to get stuck
in local minima, we use Simulated Annealing [Kirkpatrick 1983] with a
suitable cooling schedule. Since the focus of this dissertation is on modeling,
not optimization, we will not go into detail here. This learning scheme is
common to all modeling approaches presented in this thesis. For some
models, we have to make appropriate modifications which we will describe
as needed.

90 4 Etymology

4.4.3 Sanity Checking

We check the obtained codelengths against standard compressors (gzip,
bzip2) and find that our models achieve shorter encoding, cf. Figure 4
of Publication IV. In this test, the input to the standard compressors has
been the unaligned data. Our models also encode the alignments, which
accounts for additional information. On the other hand, we can exploit
the relatedness of the cognates, while standard compressors cannot. Since
our models compress more, we conclude that this regularity outweighs the
overhead from encoding the alignments. This is hardly surprising, but
nonetheless soothing to observe.

The resulting alignments can also be checked by hand, using etymolog-
ical handbooks and common sense. We find that in fact they already do
make a lot of sense. There are no gold standards available for the align-
ment problem, since it is unclear what an optimal alignment should look
like. Therefore, we cannot easily assign a score (apart from the codelength)
to measure the quality of results. But the baseline model does find the vast
majority of obvious correspondences.

Another way of looking at the results is through the |Σ.| × |T.| count
matrices, examples of which are shown in Figures 2 and 3 of Publication III.
We hope for these matrices to be sparse, as handbooks typically list only
a small number of possible correspondences for each sound. Of course we
also want to hit the right ones. Vowels should align with vowels, consonants
with consonants, and in general sounds aligning with each other should
be phonetically reasonably similar. For languages with similar alphabets
we hope for a strong ’diagonal’. Further, there should not be too many
deletions and insertions.

Judged by these linguistic criteria, the baseline model is definitely on the
right track. Starting from complete randomness, the codelength criterion
guides the algorithm to meaningful alignments.

Finally, we wanted to know how resistant these models are to noise.
To this end, we performed the following experiment. We aligned Finnish
with itself, independently introducing noise into both the source and the
target level. The contaminated data was produced by sweeping through the
data on each level once, at each point adding a random symbol—uniformly
drawn from Σ = T—with probability ν and reading off a symbol from the
original data with probability 1 − ν. We hoped to be able to align each
(original) source symbol σ with the same symbol τ = σ on the target level,
while the introduced noise symbols would be dealt with by deletions and
insertions. Up to a noise level of ν = 0.85, our models displayed the desired
behaviour almost to perfection. For higher levels of noise the amount of

4.4 Baseline Model and Extensions 91

correctly found correspondences quickly decreased. This result proves the
baseline model to be highly noise-resistant.

After these encouraging initial results with the baseline model, we now
look at several extensions and improvements we have implemented.

4.4.4 NML

We want and expect the count matrix to be sparse, since typically a sound
in the source language can correspond to only a small number of sounds
on the target side, the context determining to which of these. In such
case, the normalized maximum likelihood distribution yields slightly shorter
codelength than the marginal likelihood, which is why we prefer to use it.
With this simple model, it is easy to do the swap. The new codelength is

lKNML(D) = −
∑

e∈E
c(e) log c(e) + logR(K, |D|), (4.7)

where R(K, |D|) is the multinomial regret, a special case of Equation 3.27.
Note that, instead of the constant data size n, here we have the total

number of events, which does vary for different alignments due to insertions
and deletions. Therefore, the parameters used during realignment are not
given by the maximum likelihood as for the plug-in predictor (Eq. 3.29),
and the change in codelength does not simplify. We have

− logP (e|D−i) = L(D−i ∪ e)− L(D−i)
= (c−i(e) + 1) log(c−i(e) + 1)− c−i(e) log c−i(e)

+ logR(K, |D−i|+ 1)− logR(K, |D−i|). (4.8)

Fortunately, we can precalculate the regrets for all possible total numbers
of events and store them in a look-up table, instead of recalculating them
every time we realign.

Switching from marginal likelihood to NML consistently decreases code-
length. However, looking at the alignments and the count matrix, it is hard
to tell the difference.

4.4.5 Codebook

As mentioned above, we expect the count matrix to be sparse. Therefore,
it is beneficial to encode the positions of its non-zero entries separatedly,
and subsequently the aligned data given this knowledge. Note that in the
notation of this thesis—unlike that of Publications III and IV—this is not a

92 4 Etymology

two-part code. Here we view the choice of the non-zero positions to define
a model class. Let E+ ⊆ E be the set of positions of non-zero entries,
their number be K+ = |E+|. Then E+ is to be seen as the model class—
or codebook—we use to encode D. But before we can do so, we need to
communicate E+, which can be done in

l(E+) = log(K + 1) + log

(
K

K+

)
(4.9)

bits. We can then consider D to come from a multinomial of cardinality
K+.

The overall codelength—with the additional index ’CB’ for codebook—
then becomes

lCB,MarLi(D) = l(E+) + lK
+

MarLi(D)

= log(K+1) + log

(
K

K+

)

−
∑

e∈E+

log c(e)! + log
(
|D|+K+ − 1

)
!− log(K+ − 1)!, (4.10)

in the marginal likelihood case, and

lCB,NML(D) =l(E+) + lK
+

NML(D)

= log(K + 1) + log

(
K

K+

)
−
∑

e∈E+

c(e) log c(e) + logR(K+, |D|) (4.11)

in the case of NML encoding.

The alignment procedure remains unchanged. Only the transition costs
(or probabilities) become slightly more complicated in cases where we have
to add a new entry to the codebook. Without writing it down explicitly,
be it mentioned that in both cases—e ∈ E+ and e 6∈ E+—the transition
probability is given by Equation 4.4 as the increase in codelength of adding
the corresponding event to D−i.

Using such codebook significantly decreases codelength. At the same
time, the count matrices sparsify further. This is hardly surprising, since
adding a new event type to the codebook comes with additional cost. But
linguistic analysis (e.g., using handbooks) also reveals that the learned
alignments have greatly improved. We take this as evidence of the ade-
quacy of our approach.

4.4 Baseline Model and Extensions 93

4.4.6 Distinguishing Between Kinds of Events

Let us first some clarify some notation. We have spoken of events of being
a single instance of some core alignment, say, (p:b). Event types in our
notation are all such alignments throughout the aligned data D, that is, all
instances the (p:b)-entry in the alignment matrix corresponds to. In the
following, we also need event kinds, sets of alignment types that share a
certain characteristic. We consider four different kinds, namely one-to-one
alignments, deletions, insertions and word boundaries. The data space E
then splits into four parts, E = E1−1

.∪ Edel
.∪ Eins

.∪ E$.

In general, for K kinds, we have E =
.⋃K
κ=1Eκ. We denote the sizes of

these subsets of the data space Kκ = |Eκ|, such that K =
∑K

κ=1Kκ. Sim-

ilarly, the event types actually occuring split into E+ =
.⋃K
κ=1E+

κ with sizes
K+
κ = |E+

κ |. We do not expect different kinds of events to behave similarly.
That is, the codebook is likely to contain quite different fractions of event
types for the different kinds. Therefore it is beneficial to separately encode
K codebooks—one for each kind—of sizes K+

κ . Encoding the data given
these codebooks remains unchanged, yielding the new (NML) codelength

lCBs,NML(D) =
K∑

κ=1

l(E+
κ) + lK

+

NML(D)

=
K∑

κ=1

(
log(Kκ + 1) + log

(
Kκ

K+
κ

))
−
∑

e∈E+

c(e) log c(e) + logR(K+, |D|)

(4.12)

with the index ’CBs’ for (separate) codebooks, plural.
Once more, this reduces codelength, sparsifies the count matrix, and

also improves the resulting alignments as seen from a linguist point of view.

4.4.7 Multiple Sound Alignment

So far, our models have not taken into account any of the context informa-
tion on which phonetic rules generally condition. A first approach to do so
is to align multiple sounds at a time. This is etymologically motivated, e.g.
diphthongs in one language may correspond to single vowels in another,
and has previously been done in [Kondrak 2003, Bouchard-Côté 2007].

While our MDL models find many ’true’ multiple sound alignments (no
gold standard exists, but some seem obvious), the actual strength of this
approach lies in the context information it can capture. In order to exploit
as much context information as possible in this way, we also model both

94 4 Etymology

word boundaries explicitly, since they play an important role as condition-
ing context. As before, we denote the beginning of a word by ’#’, its end by
’$’. Encoding both initial and terminal word boundaries is a slight exten-
sion to what has been described in Publications III and IV. The MDL cost
will be defined in such a way, that this does not lead to excess codelength.

We still regard the event space E as a multinomial—when aligning d
symbols at a time it has cardinality K = |E| ≈ |Σ|d|T |d. We choose to align
at most two symbols at a time, such that this number is roughly a million.
With the amount of data we have available, d ≥ 3 seems unreasonable. An
example of a two-to-two alignment—the word pair (tuomi, toom) meaning
’bird cherry’ in Finnish and Estonian—is as follows.

#t uo m i$
| | | |

#t oo m $

Here we have captured diphthong-to-long-vowel rule (uo : oo), which can be
seen as a correspondence truly involving two sounds on the source side. The
other two multiple alignments (initial unvoiced plosive remains unvoiced
(#t : #t) and terminal i vanishes) involve context information.

We distinguish between 16 different kinds of possible event types, as
listed below:

(# : #) (#σ : #) (# : #τ) (#σ : #τ)
(σ : .) (. : τ) (σ1σ2 : .) (. : τ1τ2)
(σ : τ) (σ1σ2 : τ) (σ : τ1τ2) (σ1σ2 : τ1τ2)
($: $) (σ$: $) ($: τ$) (σ$: τ$)

. (4.13)

The corresponding event subspaces are of largely differing sizes, event types
involving two symbols on both source and target side outnumbering the
simpler types. On the other hand, we expect few of these types ever to
occur, since regular sound change requires relatively few rules. Therefore
it becomes vital that we encode the codebooks separately, as described in
Section 4.4.6.

The only real change to the cost function (apart from the definition of
the event space) comes from the fact that we encode both word boundaries
explicitly. But at each point of time during decoding, the receiver knows
whether a new word is starting (after having read a ’$’) or not. Therefore
we can split data D into two parts D = D#

.∪ D→$, where the first part
consists of kinds of the top row in (4.13) and the latter of the rest. We
can then encode these parts separately, and the receiver will be able to

4.4 Baseline Model and Extensions 95

merge them back together. Denote the event space and codebook sizes
accordingly, K = K# +K→$ and K+ = K+

+K+
→$. The NML codelength

then becomes

l2−2(D) =

16∑

κ=1

l(E+
κ) + l

K+
#

NML(D#) + l
K+
→$

NML(D→$). (4.14)

The alignment procedure, in essence, remains the same. However, the
steps we are allowed to take in the alignment matrix of Figure 4.4 are now
not only single steps right, down and diagonal, but also double steps into
the same directions as well as right-and-down knight moves. Therefore, the
minimum of Equation 4.3 is now taken over eight values. A word boundary
may now be part of an aligned pair of symbols. The transition costs are
once more given by Equation 4.4.

Two-to-two alignment further decreases codelength. It finds context-
dependent rules of sound correspondence that could not be captured align-
ing only single sounds. Among them, e.g. for Finnish:Estonian, diphthongs
uo, yö to long vowels oo, öö, unvoiced plosives k, p, t remain unvoiced word-
initially, elsewhere change into their voiced counterparts g, b, d, and so on.
The count matrix becomes too large to look at as such. We choose to only
look at the one-to-one alignments in matrix form and at all others as a
list. These lists are reasonably short, containing little ’garbage’—entries
that are not linguistically justified. Furthermore, all event types occuring
more than once do make sense intuitively. The (one-to-one) count matrix
becomes a lot more sparse, as the captured context rules reduce its entropy.

4.4.8 Separate Encoding of Affixes

To deal with the problem of poorly stemmed and/or ossified data described
in Section 4.2, we need a means of encoding affixes without aligning them.
Aligning parts of words that are not genetically related inevitably skews
the distribution of events, and in doing so may keep a model from finding
etymologically correct alignments in other parts of the corpus. These un-
related parts of cognates can be seen as noise in the data. From this point
of view, we are simply facing a typical noisy data problem.

From the MDL perspective, noise is simply data that does not compress.
When modeling data, noise often does have structure and is therefore com-
pressible, but this structure is not of the type we are interested in. In our
case, these ’nuisance affixes’ share phonetic regularities of the language they
belong to, but not the cross-language regularities we find by means of align-
ment. They can be encoded more compactly with a ’naive’, single-language
model.

96 4 Etymology

The MDL way to separate noise from signal is to build two alternative
models. One of them captures the regularities we wish to extract from the
data, the other is a naive data model to account for parts of the data that
do not display these regularities. The data is then encoded by a mixture
of both, thereby separating them. This approach has been successfully
applied to denoising problems, [Rissanen 2000, Roos 2005a]. We take a
similar approach, briefly described in Section 6 of Publication IV.

We define affix codebooks PCB (prefix codebook) and SCB (suffix code-
book), encoding non-relating cognate parts in a naive, non-aligning way.
We encode separate codebooks for source and target language, each in the
same way. For example, the codelength of the source language prefix code-
book is

l(PCBsource) = l(|PCBsource|) + l
|Σ|+1
NML(PCBsource), (4.15)

where l(|PCBsource|) is the length of a selfdelimiting encoding of the num-

ber of prefixes in the codebook, and l
|Σ|+1
NML(PCBsource) is the stochastic

complexity of the codebook viewed as coming in an i.i.d. manner from a
multinomial distribution of cardinality |Σ|+ 1. The prefixes need to be en-
coded including their boundaries, hence the cardinality of the multinomial:
the size of the source alphabet plus one for the boundary symbol.

We choose to encode the codebooks such that they reflect the order
in which they appear in the aligned data, with possible repetitions. We
therefore do not need to encode the the actual affixes when encoding the
data, after the affix codebooks have been transmitted. We do, however,
need to communicate whether an affix is present at any point, on source,
target or both sides, which can be done by introducing special events. This
makes the code of the affix-free data slightly longer, but in sum we gain.

Finding the optimal alignment of a pair of cognates can still be done
with the dynamic programming procedure as described in Section 4.4.2. In
addition to the previously mentioned steps through the alignment matrix,
we are now allowed to do ’hyper-jumps’, that is, enter and exit the matrix
at any given cell, at the associated cost coming from the implied change
in codelength. An example of an affix-stemmed alignment is the following
alignment of (takki, takista) in Finnish and Estonian, assumed original
meaning ’to be attached to’.

#t a kk i $
| | | | |

#t a k i suffix ’sta$’

4.4 Baseline Model and Extensions 97

’Denoising’ the data in this way, makes the learned rules of correspon-
dence cleaner. Although affixes are far from random and do contain infor-
mation, this is not the information we are interested in, information about
phonetic correspondence. Therefore—in this context—we may regard them
as noise. The gain in codelength obviously depends on the corpus, for the
StarLing Uralic database it is much smaller than for SSA. It is interesting
as such, which parts of a cognate will be ’stemmed away’ in this automated
fashion.

4.4.9 Multilingual Alignment

Ultimately, we want to be able to reconstruct ancestor languages. To this
end, we need to be able to align more than two languages simultaneously,
three at the very least, two descendant languages plus their common ances-
tor. In principle, our models generalize to d-fold alignment—simultaneous
alignment of d languages. Events become d-tuples of symbols, one from
each involved language, and the alignment matrix becomes d-dimensional.
But there is a fundamental problem to this approach. While the event space
grows exponentially in d, the number of cognate sets with entries in all d
languages decreases rapidly. In order to learn anything of use, we must use
all correspondence data available, which means that many cognates will be
missing from one or more languages involved.

But how do we treat missing data? And how do we prevent the counts
from becoming much smaller, when the data spreads over a larger event
space, providing deteriorating support to an increasing number of param-
eters?

Our approach is to define the cost function as the sum over each involved
pair of languages,

l(Dd) =
∑

s<t

l(D2
st), (4.16)

where D2
st is the two-dimensional, aligned data restricted to source language

Λs and target language Λt. Whenever either of the cognates σi and τ i is
missing, the corresponding item i is not part of D2

st. This definition is
valid for any of the aforementioned model classes and, as all of these are
symmetric by nature, it does not depend on the ordering of the languages
in Dd.

The alignment matrix does become d-dimensional, therefore growing
exponentially with d. The number of cells we can transition from to arrive
at a cell auv (cf. Figure 4.4) is now (at most) 2d − 1 when aligning single
symbols, and 3d − 1 when allowing two symbols to be aligned together.

98 4 Etymology

The requirements for dynamic programming to produce the optimal d-
dimensional alignment are still given, but the minimum in the analogue of
Equation 4.3 is now being taken over a larger number of values.

Section 4.7 introduces phylogenetic language trees. As we choose them
to be binary—each observed language forms a leaf, while each protolan-
guage has exactly two children—we always deal with three languages at
a time. For this reason, it suffices for our purposes to set d = 3, which
ensures efficient computation.

The cost function (4.16) is, strictly speaking, not a codelength. It is
a sum of interdependently constrained codelengths, since we demand the
two-fold alignments to be compatible. To illustrate this, let us look at the
following example.

v uo s i
| | | |
v oo s .
| | | |
. a l .

is a three-fold alignment of the triplet (vuosi, voos, al) (’year’) in Finnish,
Estonian and Khanty. Three pairwise alignments of the same cognates
might read as follows.

v uo s i
| | | |
v oo s .

v uo s i
| | | |
. a l .

v oo s
| | |
. a l

But, as these three are of different length, they do not correspond to any
three-fold alignment and are therefore incompatible. In fact, we have to
slightly modify the terms of the sum in (4.16), and reallow events of type
(. : .), simultaneous insertion and deletion. Incompatibility may also appear
in more subtle situations.

We observe, that the pairwise codelengths involved in (4.16) are slightly
larger than what we can achieve without the compatibility constraint. In
this respect, three-fold (or more-fold) alignment differs from all other ex-
tensions to the baseline model we have introduced, all of which aim at
decreasing codelength. Here, we simply build a tool for reconstruction.
This tool—a collection of compatible models—utilizes all available data.
Cognates present in only some of the languages still contribute their share
to the regularities captured by this collection, indirectly influencing all pair-
wise distributions.

4.5 Featurewise Context Modeling 99

4.5 Featurewise Context Modeling

In Section 4.4 we have presented our baseline model and a series of freely
combinable extensions to it. These models perform surprisingly well when
evaluated against any of the techniques described in Section 4.4.3 above
or Sections 4.6–4.7 below. They perform well, even though there are two
important features of the data they cannot capture.

4.5.1 Larger Context

First of all, one-to-one alignment cannot find any context dependent rules.
Two-to-two alignment only takes a very limited context into account, namely
at most one of the neighbouring symbols. However, many etymological
rules of correspondence condition on the context of a sound less locally.
For instance, vowel harmony in Finnish demands that front vowels {ä, ö, y}
may not mix with back vowels {a, o, u} in the same (uncompounded) word.
This is a long distance phonological assimilation process and the models of
Section 4.4 are unable to capture this type of rule.

The two-to-two correspondence model was a first (and successful) ap-
proach to take context into consideration, but it cannot easily be extended
to larger context. In Publications V and VI, we develop a family of context-
aware models, which take on a different structure from what we have seen
so far. To our knowledge, the models described in the following are the
first to ever capture longer range context in etymological data.

4.5.2 Phonetic Features

A second shortcoming of the models presented so far is that they operate
on the symbol level, while phonetic rules typically operate only on some
aspect—or feature—of a sound. As a result, we had to learn a number of
rules, when in fact there was only one underlying phonetic process involved.
For example, the diphthong-to-long-vowel rule in Finnish:Estonian had to
be learned twice: (uo : oo) and (yö : öö). This results in excess codelength
as well as requires more data (support) in order to be captured by a model.

In the following, we operate on the feature space, where each symbol
is represented as a vector of phonetic features. Each symbol participat-
ing in an alignment has a Type feature, a value in {K,V, .,#} denoting
consonant, vowel, absence by deletion/insertion and word boundary. All
consonants and vowels then have 4 features, each with a varying number
of possible values as listed in Table 4.1.

The question may arise, why can the models presented in Section 4.4 not

100 4 Etymology

consonant features
symbol meaning values

M Manner plosive, nasal, lateral, trill, fricative,
sibilant, glide, affricate.

P Place bilabial, labiodental, dental, retroflex,
velar, uvular.

X Voicedness – , +.
S Secondary none, palatalized, labialized, aspirated.

vowel features
symbol meaning values

V Vertical high, mid-high, mid-low, low.
H Horizontal front, central, back.
R Rounding – , +.
L Length reduced, very short, short, half-long, long.

Table 4.1: Consonant and vowel features of articulation.

operate on features instead of symbols? This is due to the fact that they
cannot incorporate context. All the context they can see is the symbol
itself (plus at most one neighbouring symbol for the two-to-two model),
but they can see all of its features, although not separately. Take away this
information and we cannot expect them to learn very much at all.

But for the context-aware models described below the situation is differ-
ent. They are able to look at the relevant aspects of both intra-symbol and
inter-symbol context. Each model class consists of a set of decision trees,
one for each feature, encoding which aspects of the context are relevant to
a specific feature of articulation. These models once more encode a pair of
languages, but can also be extended to three or more languages in the way
we have described in Section 4.4.9.

There is a number of possible variants for the context tree model classes,
we give an example of a set of choices below.

4.5.3 Context Trees

We encode the separate features, in some fixed order, first source then
target language. The relevant context is given by the model class, which
holds a tree for each feature and each language level, source and target.
The decision nodes of these trees correspond to a query of the value of a
relevant feature at some position of either the source or the target cognate.
We call the triplet (P,L, F) a context , where P is one of the positions that

4.5 Featurewise Context Modeling 101

the model may query, L is the level (either source or target) and F is one
of the possible features.

We choose to encode the symbols (i.e., their features) in the order they
come. We can only query symbols (and features of the present symbol)
already encoded. Also, we are blind to past insertions and deletions. This
restriction needs to be made to ensure we can optimally align using dy-
namic programming2 as described in Section 4.4.2. Further, we encode the
features in a specific order, starting with the Type feature.

The positions we allow are Self (of which we can only query features
already encoded), Previous Symbol (which is not a dot), Previous Con-
sonant, Previous Vowel, as well as Self or Previous Consonant and
Self or Previous Vowel (previous iff Self is not a consonant/vowel). The
definition of the set of positions a tree can query is crucial. Our choice is
not the only one that is possible, nor is it the only one we have tried. It
simply seems to be reasonable and working well.

For the consonant positions we can only query consonant features, vowel
features for vowel positions. Both return ′n/a′ if no appropriate symbol
can be found, i.e., we run into the word boundary first. For the undecided
positions Self and Previous Symbol we can query Type and any other
feature, which may then also return ′n/a′, if the symbol found at that
position and level is of inadequate type to the query.

Each decision node/query splits the tree into a number of subtrees equal
to the number of possible answers. In order to keep the trees from growing
too wide, we also allow binary queries of the form (P,L, F, V), where V is
a given value and the return value is either true or false.

Each feature F at level L of a symbol σ or τ then takes a path through
the decision nodes, starting from the root and arriving at the leaf node
corresponding to its relevant context, as the feature tree defines it. Each
leaf node contains a distribution over the values of F , as a multinomial of
cardinality |F |, the number of values for that feature. This distribution
is used to encode F (σ), respectively F (τ). Figure 4.5 shows a context
tree, encoding the context relevant to feature V (voicedness) in Estonian,
conditioned on Finnish.

Each path from the root to a leaf of such tree encodes a context rule.
For instance, following the leftmost branch from the root lets us arrive at a
leaf immediately. The corresponding rule states that, if a Finnish consonant
is voiced (Finnish Itself Voiced = ⊕), then so is its Estonian counterpart,

2A more recent implementation of the algorithm does not require this restriction, as
long as we are allowed to query the Type feature only for the present and immediately
preceding symbol.

102 4 Etymology

Figure 4.5: Context tree for the consonant feature ’Voicedness’ in Estonian,
conditioned on Finnish.

with high probability (615 observed instances against 2).

4.5.4 Codelength

We encode the model class—the trees—in a naive way, by simply listing for
each node whether it is a leaf or not using one bit and, if it is not, which
triplet (P,L, F) or quadruplet (P,L, F, V) is being queried. Encoding this
decision costs the logarithm of the number of choices we can make here.
This number depends on the feature to be encoded, and with our choice of
contexts that can be queried amounts to a little more than eight bits on
average. For a model class C, a collection of 18 trees (two levels times Type
plus four consonant and four vowel features), the corresponding codelength
l(C) is then the number of total nodes plus—roughly—eight times the total
number of decision nodes.

This encodes the model class. Encoding the aligned data D given the
model class can be done at the leaves of each tree. At every point in time
during encoding—as well as during decoding—we are aware of the context
already encoded. This context together with the model class (the structures
of the trees) determines the leaf into which F (σ) (or F (τ)) falls. We can
therefore encode the data at the leaves, one leaf at a time, and the decoder
will know in which order to merge these feature events back together in

4.5 Featurewise Context Modeling 103

order to recover the original data. The total codelength is then

lcontext(D, C) = l(C) +
∑

L

∑

F

∑

`

l
|F |
NML(D|L,F,`). (4.17)

For the data part of the code, we sum over both levels L, all phonetic
features F , and all leaves ` of the corresponding context tree in C. For each
leaf we apply the NML code to the data D|L,F,`—restricted to the current
level, feature and leaf—as a multinomial of cardinality |F |.

4.5.5 Learning

To learn the model, we once more start from a random alignment of all
cognates. We then build the decision trees as described below, to arrive
at an initial model. This we use to realign all cognates as we have done
in Section 4.3. Not being able to query dots (deletions/insertions) in the
decision nodes ensures, that at any cell in the alignment matrix of Fig-
ure 4.4 the path we took to arrive at this cell has no influence on future
transition costs, the requirement needed to ensure optimality of the align-
ment found by means of dynamic programming. After realigning a single
pair of cognates, we only update the counts at the leaves of all feature
trees, not rebuild those trees, which would slow the algorithm too much.
We only rebuild the feature trees after realignment of the complete cor-
pus. We alternate between tree rebuilding and corpus realignment until
convergence. Again, to avoid premature convergence to a poor, but locally
optimal solution, we employ simulated annealing with a suitable cooling
schedule.

We learn the trees—given a complete alignment of the corpus—by iter-
atively splitting the feature data according to the cost-optimal decision in
a greedy fashion. For given level L and feature F , we start out by storing
all corresponding feature events e at the root node of the tree, e.g. for the
voicedness feature V in Estonian (aligned to Finnish, cf. Figure 4.5) we
store data with counts

+ 801
- 821

In this example, there are 1.622 occurrences of Estonian consonants in the
data, 801 of which are voiced. The best split the algorithm found was on
’(Source, Self, V)’, resulting in three leaves (or roots of new subtrees). The
data now splits according to this context into three subsets with counts

+

+ 615
- 2

-

+ 135
- 764

n/a

+ 51
- 55

104 4 Etymology

For each of these new nodes we split further, until no further drop in total
codelength can be achieved. A split costs about eight plus the number
of decision branches in bits, the achieved gain is the drop in NML cost
obtained from splitting the data.

4.5.6 Evaluation

As the model classes have become much more potent in that they can take
larger context into account, the codelength decreases considerably. As we
still align on the symbol level—even though we encode each symbol by its
feature vector—we may again plot the count matrix. When we did so, we
noticed some strange behaviour. While for some runs on some data the
corresponding count matrix looks sensible (sparse), for others it does not,
far from it. Looking at the actual alignments reveals the problem: in the
latter cases the algorithm finds shifted alignments, such as

v u o s i
| | | | |
. v o o s

In these cases it does so consistently, which does not hurt in terms of code-
length. For any symbol, the most relevant context information is obviously
in the symbol which it correctly corresponds to. Encoding source first,
then target given the source, the information about the according feature
of the corresponding symbol is available to the target, but not to the source.
Shifting the alignment to the left reverses this situation. Shifting to the
right (as in the example above) makes some of the source future available
to the target. Of course, shifting the available context window does not
make additional information available in sum. Overall, we do not gain
from shifting (on average), but it does no harm, either. However, shifted
alignments make the models less readable, as we have to undo the shift in
our heads before we can read off rules from the context trees. Moreover,
as stated above, the count matrices no longer display the desired structure.
Obviously, this behaviour is unintended.

In order to still obtain a sound-by-sound alignment, we have recently
developed a post-processing method that has produced encouraging initial
results. The rationale behind it is that the largest portion of the informa-
tion relevant to some sound should be in the corresponding sound on the
opposite level. We measure the information gain at each node along the
root-to-leaf path for every sound and use dynamic programming to find,
for each word pair, the alignment that maximizes the sum of information
gains over all pairs of sounds involved in it.

4.5 Featurewise Context Modeling 105

We can now look at the count matrices and we find they do make sense.
But they only show some aspects of the models, as they do not capture the
context information as the models do. The context rules can be read off
the feature trees themselves. Every path from the root of a tree that ends
in a leaf with a distribution of low entropy provides us a rule. For instance,
the rule that unvoiced consonants in Finnish remain unvoiced in Estonian
word-initially, can be represented by the path (in the Voicedness-tree for
Estonian, see Figure 4.5)

(Source, Self, V)
−−→ (Target, Previous, Type)

#−→
(

+ | 1
− | 396

)
(4.18)

where the leaf distribution has very low entropy, 396 out of 397 instances of
word-initial Estonian consonants corresponding to an unvoiced consonant in
Finnish are unvoiced. Leaf nodes with high entropy represent unexplained
variation.

4.5.7 Exploiting Monolingual Rules

Checking these rules, we also notice that some of them are not of the type
we had hoped to find. While many are non-trivial rules of etymological
correspondence, others are much more bland, such as the following rule for
Finnish place of articulation of consonants.

(Source, Self,M)
trill−→

bilabial | 0
labiodental | 0
dental | 52

retroflex | 0
velar | 0
uvular | 0

(4.19)

This simply means that all Finnish trills are dentally articulated. Trivial,
as the only trill in the Finnish alphabet is ’r’. In fact, rules of this type can
be encoded more compactly by a sound map, an example of which is given
in Table 4.2.

Manner→ plosive nasal lateral trill fricative sibilant glide affricate
Voicedness→ + - + - + - + - + - + - + - + -

Place↓
bilabial p m

labiodental v
dental d t n l r s

retroflex
velar k N j

uvular h

Table 4.2: A map of Finnish consonants.

106 4 Etymology

The sound maps for the involved languages can safely be assumed
to be known to the receiver of the encoded data. A first—yet to be
implemented—approach to exploit this information in encoding is the fol-
lowing. When building a feature tree, simply erase all feature events from
the data stored at the root node, which are completely specified using the
previously encoded features of the same symbol together with the sound
map. There is no additional information needed to decode these instances
and hence we can save some bits here. At the same time, the feature trees
should become smaller, better readable. Also, when encoding the data at a
leaf, we can ignore impossible values. For example, there are no retroflexes
in Finnish. When the cardinality of the multinomial feature variable can
be decreased in this way, the regret shrinks and the code gets shorter. Un-
fortunately, not all situations are as clear cut. Some events will be specified
only partially. How to deal with this type of situation is a subject of future
research.

Another interesting direction for the future is to combine separate mod-
els for each involved language together with a pure correspondence model.
Context models as described above can be just as easily built for a single
language, simply by building the trees without any alignment. The allowed
contexts to be queried are then restricted to a single level. In this way,
we can find phonetic rules within the modeled language, e.g. for Type in
Finnish the rule

(Source, Previous, Type)
consonant−→

−→ (Source, Previous V owel, Type)
n/a−→

vowel | 1332
consonant | 0

| 0

 (4.20)

stating that word-initially, there cannot be two consecutive consonants.
Taking this information out of the correspondence model would yield smaller
trees, which are better interpretable and provide larger data support at each
leaf.

4.6 Imputation 107

4.6 Imputation

We have introduced a series of MDL methods, producing codes of decreasing
length. Information-theoretically, it is interesting to see how the linguistic
assumption of regularity of phonetic change helps us to compress the given
data. We have also evaluated these models by the rules of etymological
correspondence of sounds they are able to find. Finally, we have checked
the alignments they produce by hand. As there exists no gold standard
for the alignment problem—and we do not know how any such standard
could be defined—we are left to our own devices in judging their quality.
While we find that both the discovered rules and the alignments found by
the models closely follow the length of the codes associated to them, this
way of evaluating ’by hand’ remains somewhat unsatisfactory.

For this reason, we have developed a more intuitively appealing, cross-
validation type procedure of evaluation we call imputation. For a given
model and a language pair—e.g., Finnish/Estonian—we hold out one word
pair at a time and train the model on the remaining data. Then we show
the hidden Finnish word to the model and let it guess, or impute, the cor-
responding Estonian form. We then compute the Levenshtein edit distance
[Levenshtein 1966] between the imputed word and the withheld Estonian
word, the minimum number of basic editing operations needed to produce
one from the other. We impute all words of the target language in this way,
sum the edit distances, and normalize by the number of symbols in the cor-
rect target data. This gives us the Normalized Edit Distance (NED).
Table 1 of Publication V lists the (symmetrized) NED scores achieved by
the context model on all language pairs in the StarLing Uralic database.
Figure 6 of Publication VI compares the NED scores achieved by the con-
text model to those achieved by the baseline model with codebook.

For the baseline model (and its extensions), we can use a dynamic pro-
gramming procedure similar to that used for alignment to obtain an im-
puted word form which, when the true, erased word is replaced with it,
results in the shortest overall codelength. The alignment matrix now sim-
plifies to a vector of length equal to the length of the given word in the
source language, plus two for the word boundaries. Allowed transitions are
steps of size one (one or two for a two-to-two model) and the associated
cost is given by the minimum cost over all events e which involve the corre-
sponding symbol(s) on the source side. The target symbol(s) involved in the
transitions of the cost-optimal path form the imputed word. In the same
way, we can also impute conditioned on cognates in multiple languages, in
which case the dimension of the imputation matrix equals the number of
given word forms.

108 4 Etymology

Following the same scheme with a context model does not necessar-
ily produce the codelength-optimal imputation. Since the imputed target
word contributes to the context—and therefore a partial imputation can
influence future transition costs—the optimality requirement of dynamic
programming is violated. Our solution to this problem is the following. At
any point i during imputation, corresponding to having read off σ1, . . . , σi
from the given source word, we have stored the B best partial imputations.
We now read off the next symbol σi+1 in all |T.| possible ways by encoding
τ ∈ T. using the model and all B stored contexts. Out of these B · |T.|
new solutions, we again keep the B ones with minimal cost. Theoretically,
this does not guarantee optimal imputation, but in practice, for only one
cognate given, we find that B = 100 suffices. We see this by checking that,
say, B = 1000 yields the same solutions. In this way we can efficiently
impute with the context model, even if optimality is no longer guaranteed.

Codelength and NED correlate very well. This is an encouraging indi-
cator for codelength minimization to be a good approach. Our methods do
not optimize NED directly, but operate on the codelength instead. Yet they
produce models of low NED, a simple and intuitive measure of a model’s
quality.

Imputation will become a necessary tool in reconstruction of unobserved
ancestor languages, which is the ultimate goal of our research. Even if we
do not yet know how to automatically reconstruct protoforms (and nor
does anyone else, to our knowledge), we feel that imputation provides a
promising approach to this task, which we further discuss in Chapter 5.

The normalized edit distance also defines a measure of closeness between
related languages, which we will use to construct phylogenetic language
trees, as we describe in the following Section.

4.7 Phylogenetic Language Trees 109

4.7 Phylogenetic Language Trees

Another way to verify the soundness of our approach is to let the mod-
els induce phylogenetic trees of the involved languages, representing the
structure of their genetic relatedness. These can then be compared to trees
found in the literature. Examples of such trees, for the languages of our fo-
cus, are shown in Figure 5 of Publication IV (adapted from [Anttila 1989])
and Figure 1 of Publication V (adapted from the Encyclopedia Britannica).
Although the two agree in large parts, there are some differences. A large
collection of phylogenetic trees for this language family—and others—can
be found at [Multitree 2009], displaying even more different views on the
subject. The evolution of the Uralic language family is subject to debate
among linguists. So once again, there is no gold standard to compare our
results to, but we intend to add a voice to the discussion.

Phylogenetic trees are typically binary, rooted and inferred from dis-
tance matrices. The observed languages serve as the leaves of such tree,
the inner nodes are unobserved, common ancestor languages to the leaves
of the subtree rooted in them. Binary trees suite our purposes well, as
the maximum number of neighbours we need to consider in reconstruction
is minimal for them. Several algorithms to learn binary trees from given
pairwise distances are readily available, such as the Unweighted Pair Group
Method with Arithmetic Mean (UPGMA, [Murtagh 1984]), NeighborJoin
[Saitou 1987] and the Quartet Tree method [Cilibrasi 2006]. The latter two
actually produce unrooted trees, but there is a standard way to root them.
Adding a ’garbage node’—one with distance to all other nodes greater than
any inter-language distance—provides a pointer to the position of the root.
There are also several ways to define the language distances used to infer
a tree.

Normalized edit distance is one obvious candidate. As this measure is
asymmetric, we need to symmetrize the distance matrix, e.g. by taking
the arithmetic mean over the distances in both directions. Figure 7 of
Publication VI shows a phylogenetic language tree induced by NeighborJoin
from the symmetrized normalized edit distances obtained by the context
model.

To the information theorist, a more natural way to define pairwise lan-
guages distances is via the codelength itself. Not only does it involve the
the (minus log-) probability of the correct target word (under the optimal
alignment) instead of the Levenshtein distance to the imputed version. As
the latter is discrete, it can be regarded less informative. Codelength also
involves the complexity of the learned rules of correspondence between the
two languages. The means we use to turn codelengths into a distance mea-

110 4 Etymology

sure is the Normalized Compression Distance (NCD) [Cilibrasi 2007].
For Languages S and T, with corresponding common cognates DS and DT,
it is defined as

NCD(DS,DT) =
l(DS : DT)−min{l(DS), l(DT)}

max{l(DS), l(DT)} , (4.21)

where l(DS : DT) is the codelength achieved by the model we are using,
and l(DS) and l(DT) are the codelengths achieved by a monolingual ver-
sion of the same model. All models we have considered here can easily be
restricted to encode a single language instead of two or more. Figure 6 of
Publication IV shows a tree that was built by UPGMA with the NCD ma-
trix for the baseline model. Figure 4.6 of this thesis, in turn, depicts a tree
induced by NeighborJoin based on the normalized compression distances
calculated using the context model, representing the phylogenetic structure
of the Turkic language family.

0

0.1

0.2

0.3

0.4

0.5

B
a
lk

a
r

K
u
m

yk

K
a
za

kh
K

a
ra

ka
lp

a
k

N
o
g
h
a
i

K
ir
g
iz

K
a
ra

im

B
a
sh

ki
r

T
a
ta

r

O
yr

a
t

O
ld

 T
u
rk

ic
K

h
a
ra

kh
a
n
id

M
id

d
le

 T
u
rk

ic
(C

H
G

)

U
zb

e
k

G
a
g
a
u
z

T
u
rk

is
h

A
ze

rb
a
ija

n
i

T
u
rk

m
e
n

U
ig

h
u
r

K
h
a
la

j
S

a
ri
−
Y

u
g
h
u
r

K
h
a
ka

ss
ia

n

S
h
o
r

T
o
fa

la
r

T
u
va

S
a
la

r

D
o
lg

a
n

Y
a
ku

t
C

h
u
va

sh

Figure 4.6: Phylogenetic language tree for the Turkic language family, in-
duced by NeighborJoin from NCDs based on the context model of Sec-
tion 4.5.

The phylogenetic languages trees induced by our methods are strikingly
similar to the ones that can be found in the literature. The baseline model
still makes a clear mistake by misplacing (the correctly found pair) Mansi
and Khanty . The context model, however, makes no obvious mistakes, the

4.7 Phylogenetic Language Trees 111

resulting trees lie within the variation among expert opinions, with equality
for some.

We find this to be strong evidence for the validity of our approach.
After all, we have induced these trees from raw data alone, using no prior
assumptions, no semantic knowledge and no linguistic expertise in training
the models.

112 4 Etymology

Chapter 5

Summary and Current Work

“We can only see a short distance ahead,
but we can see plenty there needs to be done.”

—Alan Turing, Computing Machinery and Intelligence.

The starting point of this thesis has been Bayesian reasoning, in partic-
ular its application to the task of model class selection. We have identified
a number of problems related to this approach, such as the questionable
assumption about the existence of a data generating distribution. Even if
such distribution exists, it will not usually be a member of a model class
under consideration, which can be especially harmful in supervised learning
tasks such as classification. We further have to define prior distributions,
both over the model classes we want to choose from and the models within
each class. It is hard to do so in an objective way and, even in cases where
we do have prior knowledge about the problem domain, the formulation of
a prior can prove to be very difficult.

An elegant way around these problems is being offered by information
theory, which enables us to look at data with no assumptions regarding
their source. Following the minimum description length (MDL) principle,
we regard the problem of maximizing probability as one of minimizing
codelength, that is, data compression. Compression then is purely data-
driven. As with any approach, we must first to define a suitable model class
or model family to choose a class from. Then we define a method to describe
the data as compactly as possible, an encoding scheme that gives good
compression rate. This description method can be seen as corresponding
to a prior of some sort, but typically this choice is more intuitive and
straight-forward than the formulation of a prior.

The theory of Kolmogorov complexity provides proof for the fact that

113

114 5 Summary and Current Work

there can be no automated procedure to optimally choose a model class.
Regardless of the approach we are taking, we have to define a model family
by hand, and choose an appropriate class from that. The MDL model class
selection criterion is compression rate, we choose the class that achieves the
shortest description length for the data at hand. But we can never be sure
whether the class found in this way is optimal, model classes outside the
family under consideration may achieve better compression rates. On the
other hand, MDL methods make no prior assumptions about the nature of
the data, its generating distribution or the suitability of the chosen model
family or any of its members.

The problem of selecting a model within a chosen class or, equiva-
lently, parameter estimation has turned into the problem of defining an
encoding scheme. Where efficiently computable, we have a generic choice
available, namely the normalized maximum likelihood (NML) distribution.
Compared to the best model in the class under consideration, it achieves
minimal excess codelength in the worst-case over all possible data. Under
the assumption that data come from a universal distribution, Kolmogorov
theory proves that the NML distribution also yields the shortest code on
average, at least up to an additive constant depending on the universal
Turing machine (UTM) with respect to which the universal distribution is
defined. This assumption, while it may be called into question as such, is
justified by the fact that any universal distribution, again up to a constant
factor, dominates all other distributions.

This makes the NML distribution a valuable tool in data modeling. Un-
fortunately, computing this distribution is often infeasible in practice. But
this does not hold for a number of relatively simple model classes. Publi-
cation II investigates the boundaries of NML computability for a specific
family of Bayesian network models.

In case we cannot efficiently compute the NML distribution, we can
often still use it for subproblems. Approximations of various type have
also been reported to yield good model class selection criteria in an in-
creasing number of applications. But with or without NML, we can always
compare different encoding schemes objectively by looking at the resulting
codelengths. Comparability is among the greatest strengths of the MDL
approach, as it enables us to compare models of utterly different type and
parametric structure by their compression capability.

Based on these findings, in Publications III–VI, we develop and evaluate
a series of model families for the alignment problem arising in etymological
data analysis. This is a novel approach, as for the first time information-
theoretic methods are being applied to this problem. We utilize the MDL

115

principle and compress the raw data together with the alignment we are
searching. In order to do so, we have to find and exploit the regularities of
phonetic correspondence in the given data. This enables us to not only find
good alignments, but also directly read off these rules from the models. The
rules we find are probabilistic by nature. Although the basic, linguistically
motivated assumption behind the problem is that inter-language change
of sounds is a regular process, the data we are using contain noise from a
variety of sources. Therefore, we cannot expect to find rules to completely
explain the data in a deterministic manner.

Rules of phonetic variation are typically context-dependent, where the
context relevant to a rule may restrict to the immediate neighbourhood of
the sound in concerns, but often also involves longer-distance dependencies.
The context model introduced in Section 4.5 is able to capture many such
dependencies. It builds feature-wise decision trees, which explicitly en-
code the context it sees relevant to a rule. An obvious direction of further
research is to make an even larger context available to these trees. For in-
stance, we can model vowel harmony in Finnish only to some degree. Since
in our present implementation, we can only query information about the
vowel immediately preceding each position, we cannot ’see through’ vowels
{i, e} behaving neutrally with respect to this rule. Phonetic rules may also
condition on aspects on the syllable level, such as stress. At present, we
are unable to capture these rules.

A problem we face in this research lies in evaluation of the obtained
results. Neither does a gold standard exist for the alignment problem,
nor are there obvious, objective ways to compare the performance of our
algorithms to other methods. We develop several ways to give evidence
for the validity of our approach and the quality of our results. From an
information-theoretic perspective, the achieved compression rate measures
the quality of any model. Using codelength as a criterion, we can compare
our models among each other. But we have no outside milestone to compare
them against. This calls for further, linguistically motivated evidence to
indicate the quality of our results.

Checking phonetic rules discovered by the models by hand, or even
inspecting the obtained alignments on the cognate level, is troublesome and
hardly leads to any objective criterion for comparison. On the cognate level,
we introduce an imputation procedure that supplies an intuitive quality
measure: the normalized edit distance (NED) between the true and the
model-imputed word forms. On the corpus level, we let our models induce
phylogenetic trees of the involved languages, which we then compare to
expert-built trees found in the literature. These trees can be constructed

116 5 Summary and Current Work

by various algorithms that typically take a matrix of pair-wise language
distances as input. We can produce such matrices using NED, but also
directly from the codelengths. Normalized compression distance (NCD)
provides the desired means here.

In all tests we have performed our models do well. On top of that,
the codelength—the MDL criterion we optimize during learning—correlates
strongly with any of the other criteria we have used in evaluation. Figure 5.1
shows a schematic diagram of the evaluation methods we have used, the
bottom level containing the evaluation nodes.

Data

Model

Rules Codelength
Assessed

Wordform

Language

Tree

Distance

Matrix

B
as

el
in

e
C

on
te

xt

Alig
nment, C

ount M
atrix

Feature Trees

Impu−tation

NCD

N
E

D

UPGMA, NeighborJoin

Quartet Tree

Figure 5.1: Flow chart of the used evaluation methods.

Another direction, as mentioned in Section 4.5.7, is to separate phonetic
rules within each single language—including information about the alpha-
bet the language is using—from the correspondence model. This should
improve learning, as the models become simpler and better supported by
the data. Also, this would improve model readability, giving a clearer pic-
ture of the involved phonetic processes. However, this requires an encoding
scheme that can combine the rules encoded in the multiple models to ends
of codelength minimization. At present it is unclear how to achieve this.

A more immediate application of our methods is that of cognate eval-
uation. Many of the entries in the corpora are marked uncertain. And
while our models cannot evaluate the semantic aspects involved in cognate
discovery, they do define a measure of phonetic similarity. We can modify
the codelength-based distance measure NCD to apply on the cognate level,
conditioned on the learned models of a larger data. For cognates σ ∈ S

117

and τ ∈ T we define

NCD(σ, τ)

=
l((σ : τ)|M(DS : DT))−min{l(σ|M(DS)), l(τ |M(DT))}

max{l(σ|M(DS)), l(τ |M(DT))} , (5.1)

where M(DS), M(DT) and M(DS : DT) are the mono- and bilingual
models learned from the given corpus. Ranking the cognate pairs according
to this score, we may then decide to remove some improbable cases to arrive
at a cleaner data set. Furthermore, this measure of degree of phonetic
correspondence—as the model sees it—will be of linguistic interest in itself.

Finally, as mentioned earlier, we would ultimately like to be able to
reconstruct ancestor languages which have been lost and can no longer be
observed. We are able to generate phylogenetic language trees, good guesses
of the history of language separation. The leaf nodes of these trees represent
the languages of our corpus, while the inner nodes are unobserved. Alter-
natingly building models of correspondence between neighbouring nodes
and re-estimating the word forms of the unobserved languages by means of
imputation, we hope to be able to reconstruct the history all the way up
to—in our case—’Ur-Uralic’.

118 5 Summary and Current Work

References

[Akaike 1974] H. Akaike. A new look at the statistical model identi-
fication. IEEE Transactions on Automatic Control,
vol. 19, no. 6, pages 716–723, 1974.

[Andrews 1976] G.E. Andrews. The Theory of Partitions. Addison-
Wesley Publishing Company, Reading, MA, 1976.

[Angluin 1983] D. Angluin & C.H. Smith. Inductive Inference: The-
ory and Methods. ACM Computing Surveys, vol. 15,
no. 3, pages 237–269, 1983.

[Anttila 1989] R. Anttila. Historical and Comparative Linguistics.
John Benjamins, New York, 1989.

[Barbançon 2009] F.G. Barbançon, T. Warnow, D. Ringe, S.N. Evans
& L. Nakhleh. An experimental study comparing lin-
guistic phylogenetic reconstruction methods. In Pro-
ceedings of the Conference on Languages and Genes,
pages 887–896, UC Santa Barbara, June 2009. Cam-
bridge University Press.

[Bellman 1957] R. Bellman. Dynamic Programming. Dover Publi-
cations, Incoporated, 1957. republished 2003.

[Berger 1985] J.O. Berger. Statistical Decision Theory and
Bayesian Analysis. Springer, 2 edition, 1985.

[Bernardo 1994] J.M. Bernardo & A.F.M Smith. Bayesian theory.
John Wiley, 1994.

[Blei 2003] D.M. Blei, A.Y. Ng & M.I. Jordan. Latent Dirichlet
Allocation. Journal of Machine Learning Research,
vol. 3, pages 993–1022, 2003.

119

120 References

[Bouchard-Côté 2007] A. Bouchard-Côté, P. Liang, T. Griffiths & D. Klein.
A Probabilistic Approach to Diachronic Phonology.
In Proceedings of the 2007 Joint Conference on
Empirical Methods in Natural Language Process-
ing and Computational Natural Language Learn-
ing (EMNLP-CoNLL), pages 887–896, Prague, June
2007.

[Bouchard-Côté 2009] A. Bouchard-Côté, T. Griffiths & D. Klein.
Improved Reconstruction of Protolanguage Word
Forms. In Proceedings of the North American Chap-
ter of the Association for Computational Linguistics
(NAACL09), 2009.

[Box 1979] G.E.P. Box. Robustness in the strategy of scientific
model building. In R.L. Launer & G. Wilkinson, ed-
itors, Robustness in Statistics, pages 201–236. Aca-
demic Press, 1979.

[Cawley 2007] G.C. Cawley, N.L.C. Talbot & M. Girolami. Sparse
Multinomial Logistic Regression via Bayesian L1
Regularisation. In B. Schölkopf, J. Platt & T. Hof-
mann, editors, Advances in Neural Information Pro-
cessing Systems 19 (NIPS-06), volume 10. The MIT
Press, 2007.

[Cilibrasi 2006] R. Cilibrasi & P.M.B. Vitányi. A New Quartet Tree
Heuristic for Hierarchical Clustering. CoRR, 2006.
http://arxiv.org/abs/cs/0606048.

[Cilibrasi 2007] R. Cilibrasi & P.M.B. Vitányi. The Google Sim-
ilarity Distance. IEEE Transactions on Knowledge
and Data Engineering, vol. 19, no. 3, pages 370–383,
2007.

[Cover 1991] T. Cover & J. Thomas. Elements of Information
Theory. John Wiley & Sons, New York, NY, 1991.

[Creutz 2007] M. Creutz & K. Lagus. Unsupervised Models for
Morpheme Segmentation and Morphology Learning.
ACM Transactions on Speech and Language Pro-
cessing, vol. 4, no. 1, pages 3:1–3:34, 2007.

References 121

[Dawid 1984] A.P. Dawid. Statistical Theory: The Prequential Ap-
proach. Journal of the Royal Statistical Society A,
vol. 147, pages 278–292, 1984.

[Djurić 1998] P.M. Djurić. Asymptotic MAP criteria for model
selection. IEEE Transactions on Signal Processing,
vol. 46, no. 10, pages 2726–2735, 1998.

[Dyer 1997] M.E. Dyer, R. Kannan & J. Mount. Sampling con-
tingency tables. Random Structures and Algorithms,
vol. 10, no. 4, pages 487–506, 1997.

[Flajolet 2009] P. Flajolet & R. Sedgewick. Analytic Combinatorics.
Cambridge University Press, 2009.

[Friedman 1997] N. Friedman, D. Geiger & M. Goldszmidt. Bayesian
Network Classifiers. Machine Learning, vol. 29,
pages 131–163, 1997.

[Gao 2000] Q. Gao, M. Li & P.M.B. Vitanyi. Applying MDL to
learn best model granularity. Artificial Intelligence,
vol. 121, no. 1–2, pages 1–29, 2000.

[Gelman 1995] A. Gelman, J. Carlin, H. Stern & D. Rubin.
Bayesian Data Analysis. Chapman & Hall, 1995.

[Gillispie 2001] S.B. Gillispie. Enumerating Markov equivalence
classes of acyclic digraph models. In J. Breese &
D. Koller, editors, Proceedings of the 17th Interna-
tional Conference on Uncertainty in Artificial Intel-
ligence (UAI’01), pages 171–177. Morgan Kaufmann
Publishers, 2001.

[Greenhill 2009] S.J. Greenhill & R.D. Gray. Austronesian Lan-
guage Phylogenies: Myths and Misconceptions about
Bayesian Computational Methods. In A. Adelaar
& A. Pawley, editors, Festschrift for Robert Blust,
pages 375–397. Pacific Linguistics, Canberra, 2009.

[Greiner 1997] R. Greiner, A. Grove & D. Schuurmans. Learning
Bayesian Nets that Perform Well. In Proceedings
of the Thirteenth Conference on Uncertainty in Ar-
tificial Intelligence (UAI-97), pages 198–207, Provi-
dence, August 1997.

122 References

[Greiner 2001] R. Greiner & W. Zhou. Discriminant Parame-
ter Learning of Belief Net Classifiers, 2001. from
http://www.cs.ualberta.ca/∼greiner/.

[Greiner 2002] R. Greiner & W. Zhou. Structural Extension to Lo-
gistic Regression: Discriminant Parameter Learn-
ing of Belief Net Classifiers. In Proceedings of the
Eighteenth Annual National Conference on Artificial
Intelligence (AAAI-02), pages 167–173, Edmonton,
August 2002.

[Grünwald 2007] P. Grünwald. The Minimum Description Length
Principle. MIT Press, 2007.

[Grünwald 2009] P. Grünwald. Ignoring Data in Court: an
Idealized Decision-Theoretic Analysis, 2009.
homepages.cwi.nl/∼pdg/publicationpage.html.

[Heckerman 1995] D. Heckerman, D. Geiger & D.M. Chickering.
Learning Bayesian Networks: The Combination of
Knowledge and Statistical Data. Machine Learning,
vol. 20, no. 3, pages 197–243, September 1995.

[Hill 1997] R.M. Hill. Applying Bayesian Methodology with a
Uniform Prior to the Single Period Inventory Model.
European Journal of Operational Research, vol. 98,
no. 3, pages 555–562, 1997.

[Honkola 2013] T. Honkola, O. Vesakoski, K. Korhonen, J. Lehti-
nen, K. Syrjänen & N. Wahlberg. Cultural and Cli-
matic Changes Shape the Evolutionary History of
the Uralic Languages. Journal of Evolutionary Biol-
ogy (submitted), 2013.

[Itkonen 2000] E. Itkonen & U.-M. Kulonen. Suomen Sanojen Alku-
perä (The Origin of Finnish Words). Suomalaisen
Kirjallisuuden Seura, Helsinki, Finland, 2000.

[Jeffreys 1946] H. Jeffreys. An invariant form for the prior prob-
ability in estimation problems. Proc. Roy. Soc. A,
vol. 186, pages 453–461, 1946.

References 123

[Kessler 2001] B. Kessler. The Significance of Word Lists: Sta-
tistical Tests for Investigating Historical Connec-
tions Between Languages. The University of Chicago
Press, Stanford, CA, 2001.

[Kirkpatrick 1983] S. Kirkpatrick, D. Gelatt & M.P. Vecchi. Opti-
mization by simulated annealing. Science, vol. 220,
no. 4598, pages 671–680, May 1983.

[Kolmogorov 1965] A.N. Kolmogorov. Three Approaches to the Quanti-
tative Definition of Information. Problems of Infor-
mation Transmission, vol. 1, no. 1, pages 1–7, 1965.

[Kondrak 2002] G. Kondrak. Determining recurrent sound corre-
spondences by inducing translation models. In Pro-
ceedings of COLING 2002: 19th International Con-
ference on Computational Linguistics, pages 488–
494, Taipei, August 2002.

[Kondrak 2003] G. Kondrak. Identifying Complex Sound Correspon-
dences in Bilingual Wordlists. In A. Gelbukh, edi-
tor, Computational Linguistics and Intelligent Text
Processing (CICLing-2003), pages 432–443, Mexico
City, February 2003. Springer-Verlag Lecture Notes
in Computer Science, No. 2588.

[Kondrak 2004] G. Kondrak. Combining Evidence in Cognate Iden-
tification. In Proceedings of the Seventeenth Cana-
dian Conference on Artificial Intelligence (Canadian
AI 2004), pages 44–59, London, Ontario, May 2004.
Lecture Notes in Computer Science 3060, Springer-
Verlag.

[Kontkanen 2001] P. Kontkanen, P. Myllymäki & H. Tirri. Classifier
Learning with Supervised Marginal Likelihood. In
J. Breese & D. Koller, editors, Proceedings of the
17th International Conference on Uncertainty in Ar-
tificial Intelligence (UAI’01), pages 277–284. Mor-
gan Kaufmann Publishers, 2001.

[Kontkanen 2003] P. Kontkanen, W. Buntine, P. Myllymäki, J. Rissa-
nen & H. Tirri. Efficient Computation of Stochas-
tic Complexity. In C. Bishop & B. Frey, editors,

124 References

Proceedings of the Ninth International Conference
on Artificial Intelligence and Statistics, pages 233–
238. Society for Artificial Intelligence and Statistics,
2003.

[Kontkanen 2005] P. Kontkanen & P. Myllymäki. A Fast Normal-
ized Maximum Likelihood Algorithm for Multino-
mial Data. In Proceedings of the Nineteenth Inter-
national Joint Conference on Artificial Intelligence
(IJCAI-05), 2005.

[Kontkanen 2006] P. Kontkanen, P. Myllymäki, W. Buntine, J. Ris-
sanen & H. Tirri. An MDL Framework for Data
Clustering. In P. Grünwald, I.J. Myung & M. Pitt,
editors, Advances in Minimum Description Length:
Theory and Applications. The MIT Press, 2006.

[Kontkanen 2007a] P. Kontkanen & P. Myllymäki. A linear-time algo-
rithm for computing the multinomial stochastic com-
plexity. Information Processing Letters, vol. 103,
no. 6, pages 227–233, 2007.

[Kontkanen 2007b] P. Kontkanen & P. Myllymäki. MDL Histogram
Density Estimation. In M. Meila & S. Shen, editors,
Proceedings of the Eleventh International Confer-
ence on Artificial Intelligence and Statistics, March
2007.

[Korodi 2005] G. Korodi & I. Tabus. An efficient normalized max-
imum likelihood algorithm for DNA sequence com-
pression. ACM Trans. Inf. Syst., vol. 23, no. 1, pages
3–34, 2005.

[Kraft 1949] L.G. Kraft. A Device for Quantizing, Grouping,
and Coding Amplitude-Modulated Pulses. Master’s
thesis, Massachusetts Institute of Technology, Cam-
bridge, MA, 1949.

[Kruschke 2012] J.K. Kruschke. Bayesian Estimation Supersedes the
t Test. Journal of Experimental Psychology: Gen-
eral, 2012.

[Lauritzen 1996] S. Lauritzen. Graphical Models. Oxford University
Press, 1996.

References 125

[Levenshtein 1966] V. Levenshtein. Binary Codes Capable of Correcting
Deletions, Insertions and Reversals. Soviet Physics
Doklady, vol. 10, no. 8, pages 707–710, 1966.

[Li 1997] M. Li & P.M.B. Vitányi. An Introduction to Kol-
mogorov Complexity and Its Applications. Springer
Verlag, 1997.

[Lytkin 1973] V.I. Lytkin. Voprosy Finno-Ugorskogo Jazykoz-
nanija (Issues in Finno-Ugric Linguistics), volume
1–3. Nauka, Moscow, 1973.

[MacKay 2002] D.J.C. MacKay. Information Theory, Inference &
Learning Algorithms. Cambridge University Press,
New York, 2002.

[McLachlan 1992] G.J. McLachlan. Discriminant Analysis and Statis-
tical Pattern Recognition. John Wiley & Sons, New
York, 1992.

[McMillan 1956] B. McMillan. Two inequalities implied by unique de-
cipherability. IRE Transactions on Information The-
ory, vol. 2, no. 4, pages 115–116, 1956.

[Minka 2001] T. Minka. Algorithms for maximum-likelihood logis-
tic regression. Technical report 758, Carnegie Mellon
University, Department of Statistics, 2001. Revised
Sep. 2003.

[Mononen 2007] T. Mononen & P. Myllymäki. Fast NML Compu-
tation for Naive Bayes Models. In V. Corruble,
M. Takeda & E. Suzuki, editors, Proceedings of the
10th International Conference on Discovery Science,
October 2007.

[Mononen 2008] T. Mononen & P. Myllymäki. Computing the NML
for Bayesian Forests via Matrices and Generating
Polynomials. In Proceedings of the IEEE Informa-
tion Theory Workshop, Porto, Portugal, May 2008.

[Multitree 2009] Multitree. A digital library of language relationships,
2009. Ypsilanti, MI: Institute for Language Infor-
mation and Technology (LINGUIST List), Eastern
Michigan University. http://multitree.org.

126 References

[Murtagh 1984] F. Murtagh. Complexities of Hierarchic Clustering
Algorithms: the state of the art. Computational
Statistics Quarterly, vol. 1, no. 1, pages 101–113,
1984.

[Myllymäki 2008] P. Myllymäki, T. Roos, T. Silander, P. Kontkanen &
H. Tirri. Factorized NML Models. In P. Grünwald,
P. Myllymäki, I. Tabus, M. Weinberger & B. Yu,
editors, Festschrift in Hounour of Jorma Rissanen,
chapter 11. 2008.

[Nakhleh 2005] L. Nakhleh, D. Ringe & T. Warnow. Perfect Phy-
logenetic Networks: A New Methodology for Recon-
structing the Evolutionary History of Natural Lan-
guages. Language (Journal of the Linguistic Society
of America), vol. 81, no. 2, pages 382–420, 2005.

[Ng 2001] A.Y. Ng & M.I. Jordan. On Discriminative vs. Gen-
erative classifiers: A comparison of logistic regres-
sion and naive Bayes. Advances in Neural Infor-
mation Processing Systems, vol. 14, pages 605–610,
2001.

[Och 2003] F.-J. Och & H. Ney. A Systematic Comparison of
Various Statistical Alignment Methods. Computa-
tional Linguistics, vol. 29, no. 1, pages 19–51, 2003.

[Pearl 1988] J. Pearl. Probabilistic Reasoning in Intelligent Sys-
tems: Networks of Plausible Inference. Morgan
Kaufmann Publishers, San Mateo, CA, 1988.

[Rédei 1991] K. Rédei. Uralisches etymologisches WÃ¶rterbuch.
Harrassowitz, Wiesbaden, 1988–1991.

[Ringe 2002] D. Ringe, T. Warnow & A. Taylor. Indo-European
and computational cladistics. Transactions of the
Philological Society, vol. 100, no. 1, pages 59–129,
2002.

[Rish 2001] I. Rish. An Empirical Study of the Naive Bayes Clas-
sifier. In IJCAI’01 Workshop on Empirical Methods
in Artificial Intelligence, 2001.

References 127

[Rissanen 1978] J. Rissanen. Modeling by shortest data description.
Automatica, vol. 14, pages 445–471, 1978.

[Rissanen 1987] J. Rissanen. Stochastic Complexity. Journal of the
Royal Statistical Society, vol. 49, no. 3, pages 223–
239 and 252–265, 1987.

[Rissanen 1996] J. Rissanen. Fisher Information and Stochastic
Complexity. IEEE Transactions on Information The-
ory, vol. 42, no. 1, pages 40–47, January 1996.

[Rissanen 2000] J. Rissanen. MDL Denoising. IEEE Transactions on
Information Theory, vol. 46, no. 7, pages 2537–2543,
2000.

[Rissanen 2007] J. Rissanen. Information and Complexity in Statis-
tical Modeling. Springer, 2007.

[Rissanen 2010] J. Rissanen, T. Roos & P. Myllymäki. Model Selec-
tion by Sequentially Normalized Least Squares. Jour-
nal of Multivariate Analysis, vol. 101, no. 4, pages
839–849, April 2010.

[Robinson 1977] R. Robinson. Counting unlabeled acyclic Digraphs.
In C. Little, editor, Combinatorial Mathematics,
numéro 622 in Lecture Notes in Mathematics.
Springer-Verlag, 1977.

[Roos 2005a] T. Roos, P. Myllymäki & H. Tirri. On the Behavior
of MDL Denoising. In Proceedings of the 10th In-
ternational Workshop on Artificial Intelligence and
Statistics (AISTATS), pages 309–316, 2005.

[Roos 2005b] T. Roos, H. Wettig, P. Grünwald, P. Myllymäki &
H. Tirri. On Discriminative Bayesian Network Clas-
sifiers and Logistic Regression. Machine Learning,
vol. 59, no. 3, pages 267–296, 2005.

[Roos 2009] T. Roos, P. Myllymäki & J. Rissanen. MDL De-
noising Revisited. IEEE Transactions on Signal Pro-
cessing, vol. 57, no. 9, pages 3347–3360, September
2009.

128 References

[Saitou 1987] N. Saitou & M. Nei. The neighbor-joining method:
a new method for reconstructing phylogenetic trees.
Molecular biology and evolution, vol. 4, no. 4, pages
406–425, 1987.

[Schwarz 1978] G. Schwarz. Estimating the dimension of a model.
Annals of Statistics, vol. 6, pages 461–464, 1978.

[Shannon 1948] C.E. Shannon. A Mathematical Theory of Commu-
nication. The Bell System Technical Journal, vol. 27,
no. 4, pages 623–656, October 1948.

[Shtarkov 1987] Yu.M. Shtarkov. Universal sequential coding of sin-
gle messages. Problems of Information Transmis-
sion, vol. 23, pages 3–17, 1987.

[Silander 2007] T. Silander, P. Kontkanen & P. Myllymäki. On Sen-
sitivity of the MAP Bayesian Network Structure to
the Equivalent Sample Size Parameter. In R. Parr
& L. van der Gaag, editors, Proceedings of the 23rd
Conference on Uncertainty in Artificial Intelligence,
pages 360–367. AUAI Press, 2007.

[Silander 2009] T. Silander, T. Roos & P. Myllymäki. Locally Min-
imax Optimal Predictive Modelling with Bayesian
Networks. Proceedings of the 12th International
Conference on Artificial Intelligence and Statistics
(AISTATS ’09), pages 504–511, 2009.

[Sinor 1997] D. Sinor, editor. The Uralic Languages: Descrip-
tion, History and Foreign Influences (Handbook of
Uralic Studies). Brill Academic Publishers, Wies-
baden, August 1997.

[Starostin 2005] S.A. Starostin. Tower of Babel: Etymological
Databases, 2005. http://newstar.rinet.ru/.

[Stolcke 1994] A. Stolcke. Bayesian Learning of Probabilistic Lan-
guage Models. Technical report, 1994.

[Szpankowski 2001] W. Szpankowski. Average case analysis of algo-
rithms on sequences. John Wiley & Sons, 2001.

[Vapnik 1998] V. Vapnik. Statistical Learning Theory. John Wiley
and Sons, New York, 1998.

[Wettig 2002a] H. Wettig, P. Grünwald, T. Roos, P. Myllymäki &
H. Tirri. On Supervised Learning of Bayesian Net-
work Parameters. Technical report 2002–1, Helsinki
Institute for Information Technology (HIIT), 2002.
http://cosco.hiit.fi/Articles/hiit2002-1.ps.

[Wettig 2002b] H. Wettig, P. Grünwald, T. Roos, P. Myllymäki
& H. Tirri. Supervised Naive Bayes Parameters.
In P. Ala-Siuru & S. Kaski, editors, Intelligence,
The Art of Natural and Artificial: Proceedings of
the 10th Finnish Artificial Intelligence Conference,
pages 72–83. Finnish Artificial Intelligence Society,
2002.

129

130

Original Publications

Summary and Contributions

This doctoral dissertation is based on the following six publications, referred
to as Publications I-VI. These are reprinted in the following. In all six
papers, I am the first author, which reflects my significant contribution
to each of them. It follows a listing with brief summary and contribution
details.

Publication I

H.Wettig, P. Grünwald, T.Roos, P. Myllymäki, H.Tirri:
When Discriminative Learning of Bayesian Network Parameters Is Easy
Pp. 491-496 in Proceedings of the 18th International Joint Conference on
Artificial Intelligence, edited by G.Gottlob and T.Walsh. Morgan Kauf-
mann, 2003.

We investigate the relation between Bayesian network classifiers and
logistic regression. We find that, in many cases which we explicitly iden-
tify, the two are equivalent in the sense that they encode the exact same
set of conditional distributions. We further argue that the latter is to be
preferred as it instantiates its model parameters in a discriminative fash-
ion. Empirical results backing up our claim did not fit into this (six page)
publication, but are included in Chapter 2 of this dissertation.

Idea and implementation are of my signature. Theorems 3 and 4 are due
to Teemu Roos and Peter Grünwald. Theorem 4 appearing in Section 2.6,
a stronger result than that of Theorem 4 of the paper, is my work.

131

Publication II

H. Wettig, P. Kontkanen and P. Myllymäki:
Calculating the Normalized Maximum Likelihood Distribution for Bayesian
Forests
Pp. 1–12 in IADIS International Journal on Computer Science and Infor-
mation Systems Vol. 2 (2007), No. 2 (October).
Also published in:
Proceedings of the IADIS International Conference on Intelligent Systems
and Agents 2007. Lisbon, Portugal, 2007 (Outstanding paper award).

This publication presents an algorithm to compute the normalized max-
imum likelihood (NML) distribution for tree-structured Bayesian Networks
in polynomial time. The degree of this polynomial depends on the cardinal-
ity of the multinomials involved, which is unfortunate. There is, however,
strong evidence for the inevitability of this, both in this publication and in
[Mononen 2008], which—a year later—took an entirely different approach
to the same problem.

The problem was suggested to me by Petri Myllymäki and Petri Kont-
kanen. Realization and implementation are of my doing.

Publication III-VI

H. Wettig and R. Yangarber:
Probabilistic Models for Aligning Etymological Data
Proceedings of the 18th Nordic Conference of Computational Linguistics
NODALIDA 2011. Editors: Bolette Sandford Pedersen, Gunta Nešpore
and Inguna Skadiņa. NEALT Proceedings Series, Vol. 11 (2011), viii-ix.

H. Wettig, S. Hiltunen and R. Yangarber:
MDL-based Models for Aligning Etymological Data
RANLP-2011: Conference on Recent Advances in Natural Language Pro-
cessing (2011), Hissar, Bulgaria.

H. Wettig, K. Reshetnikov and R. Yangarber:
Using context and phonetic features in models of etymological sound change
EACL Joint Workshop of LINGVIS & UNCLH 2012, Avignon, France.

132

Publication VI

H. Wettig, J. Nouri, K. Reshetnikov and R. Yangarber
Information-Theoretic Methods for Analysis and Inference in Etymology
Pp. 52–55 in Proceedings of the Fifth Workshop on Information Theoretic
Methods in Science and Engineering (WITMSE 2012)
Edited by Steven de Rooij, Wojciech Kot lowski, Jorma Rissanen, Petri
Myllymäki, Teemu Roos and Kenji Yamanishi.

These four publications report a continuance of ongoing research. Nat-
urally, there is considerable overlap to their content, as each subsequent
publication builds up on the preceding ones. We introduce a series of
models for the alignment of kindred words within a family of natural lan-
guages. We optimze MDL-based codelength criteria, which do not utilize
any language-specific prior knowledge, resulting in utterly generic methods.
The corresponding encoding schemes range from context-unaware model-
ing on the symbol level to feature-wise modeling using context trees. We
present our results and find that it is difficult to objectively evaluate them,
as there is no golden standard alignment available. In fact, any attempt
to define such standard would inevitably result in fierce debate among lin-
guists. Therefore, we take on a number of approaches to verify the rele-
vance of our findings. Of course—from the MDL perspective—short data
encoding is a quality measure in a right of its own. We show that, indeed,
code-length correlates well with other, linguistically intuitive scores.

The alignment problem was put before me by Roman Yangarber, who
also provided the linguistic expertise. All encoding schemes and algorithms
are of my design. The research software has been implemented by Suvi
Hiltunen and Javad Nouri, and some of the data pre-processing has been
taken care of by Kirill Reshetnikov.

133

134

Publication I

Hannes Wettig, Peter Grünwald, Teemu Roos, Petri Myllymäki and Henry
Tirri

When Discriminative Learning
of Bayesian Network Parameters Is Easy

Proceedings of the 18th International Joint Conference on Artificial In-
telligence (IJCAI ’03)
Pp. 491-496
edited by G.Gottlob and T.Walsh
Morgan Kaufmann, 2003.

c© 2003

135

136

When Discriminative Learning of Bayesian Network Parameters Is Easy

Hannes Wettig
�
, Peter Grünwald

�
, Teemu Roos

�
, Petri Myllymäki

�
, and Henry Tirri

��
Complex Systems Computation Group (CoSCo)

�
Centrum voor Wiskunde en Informatica (CWI)

Helsinki Institute for Information Technology (HIIT) P.O. Box 94079
University of Helsinki & Helsinki University of Technology NL-1090 GB Amsterdam, The Netherlands.

P.O. Box 9800, FIN-02015 HUT, Finland Peter.Grunwald@cwi.nl�
Firstname � .

�
Lastname � @hiit.fi

Abstract

Bayesian network models are widely used for dis-
criminative prediction tasks such as classification.
Usually their parameters are determined using ‘un-
supervised’ methods such as maximization of the
joint likelihood. The reason is often that it is un-
clear how to find the parameters maximizing the
conditional (supervised) likelihood. We show how
the discriminative learning problem can be solved
efficiently for a large class of Bayesian network
models, including the Naive Bayes (NB) and tree-
augmented Naive Bayes (TAN) models. We do this
by showing that under a certain general condition
on the network structure, the discriminative learn-
ing problem is exactly equivalent to logistic regres-
sion with unconstrained convex parameter spaces.
Hitherto this was known only for Naive Bayes mod-
els. Since logistic regression models have a con-
cave log-likelihood surface, the global maximum
can be easily found by local optimization methods.

1 Introduction
In recent years it has been recognized that for discriminative
prediction tasks such as classification, we should use a ‘su-
pervised’ learning algorithm such as conditional likelihood
maximization [Friedman et al., 1997; Ng and Jordan, 2001;
Kontkanen et al., 2001; Greiner and Zhou, 2002]. Neverthe-
less, for Bayesian network models the parameters are cus-
tomarily determined using ordinary methods such as maxi-
mization of the joint (unsupervised) likelihood. One of the
main reasons for this discrepancy is the difficulty in finding
the global maximum of the conditional likelihood. In this pa-
per, we show that this problem can be solved, as long as the
underlying Bayesian network meets a particular additional
condition, which is satisfied for many existing Bayesian-
network based models including Naive Bayes (NB), TAN
(tree-augmented NB) and ‘diagnostic’ models [Kontkanen et
al., 2001].

We consider domains of discrete-valued random variables.
We find the maximum conditional likelihood parameters by
logarithmic reparametrization. In this way, each conditional
Bayesian network model is mapped to a logistic regression

model, for which the likelihood surface is known to be con-
cave. However, in some cases the parameters of this logis-
tic regression model are not allowed to vary freely. In other
words, the Bayesian network model corresponds to a subset
of a logistic regression model rather than the full model.

Our main result (Thm. 3 below) provides a general condi-
tion on the network structure under which, as we prove, the
Bayesian network model is mapped to a full logistic regres-
sion model with freely varying parameters. Therefore, in the
new parametrization the conditional log-likelihood becomes
a concave function of the parameters that under our condi-
tion are allowed to vary freely over the convex set ��� . Now
we can find the global maximum in the conditional likelihood
surface by simple local optimization techniques such as hill
climbing.

The result still leaves open the possibility that there are no
network structures for which the conditional likelihood sur-
face has local, non-global maxima. This would make our con-
dition superfluous. Our second result (Thm. 4 below) shows
that this is not the case: there are very simple network struc-
tures that do not satisfy our condition, and for which the con-
ditional likelihood can exhibit local, non-global maxima.

Viewing Bayesian network (BN) models as subsets of lo-
gistic regression models is not new; it was done earlier in
papers such as [Heckerman and Meek, 1997a; Ng and Jor-
dan, 2001; Greiner and Zhou, 2002]. Also, the concavity
of the log-likelihood surface for logistic regression is known.
Our main contribution is to supply the condition under which
Bayesian network models correspond to logistic regression
with completely freely varying parameters. Only then can
we guarantee that there are no local maxima in the likelihood
surface. As a direct consequence of our result, we show for
the first time that the supervised likelihood of, for instance,
the tree-augmented Naive Bayes (TAN) model has no local
maxima.

This paper is organized as follows. In Section 2 we in-
troduce Bayesian networks and an alternative, so-called 	 -
parametrization. In Section 3 we show that this allows us
to consider Bayesian network models as logistic regression
models. Based on earlier results in logistic regression, we
conclude that in the 	 -parametrization the supervised log-
likelihood is a concave function. In Section 4 we present
our main results, giving conditions under which the two
parametrizations correspond to exactly the same conditional

137

distributions. Conclusions are summarized in Section 5;
proofs of the main results are given in Appendix A.

2 Bayesian Networks and the
 -model
We assume that the reader is familiar with the basics of the
theory of Bayesian networks, see, e.g., [Pearl, 1988].

Consider a random vector � � �������������������������� � ,
where each variable ��! takes values in "$#%�������&�(')!+* . Let , be
a Bayesian network structure over � , that factorizes -���.�
into -�/�.�0� � �1!324� -����!056-879!:�;� (1)

where -87 !=< "�� � ����������� � �:* is the parent set of variable � !
in , .

We are interested in predicting some class variable ��>
for some ?A@B"�CD�������&�FEHG�* conditioned on all ��! , IKJ�L? .
Without loss of generality we may assume that ?M�NC (i.e.,�O� is the class variable) and that the children of ��� in ,
are "����6�������&�(���P* for some ERQSEHG . For instance, in the
so-called Naive Bayes model we have ET�UEVG and the chil-
dren of the class variable � � are independent given the value
of �O� . The Bayesian network model corresponding to , is
the set of all distributions satisfying the conditional indepen-
dencies encoded in , . It is usually parametrized by vectorsWYX

with components of the form Z X[�\^] _�`;\ defined byZ X[a\^] _�`;\cb �d-��� ! �fe ! 56-87 ! �hgi7 ! �;� (2)

where gi7 ! is any configuration (set of values) for the par-
ents -879! of ��! . Whenever we want to emphasize that
each gi79! is determined by the complete data vector ej��ei������������ek��� � , we write gl79!�/el� to denote the configuration
of -87 ! in , given by the vector e . For a given data vec-
tor ed�m/en�$��e4�6����������el���:� , we sometimes need to consider
a modified vector where el� is replaced by elG� and the other
entries remain the same. We then write gi7 ! �e G� �(el� for the
configuration of -87 ! given by �elG� ��e � �������&�(e ��� � .

We let o X
be the set of conditional distributions-���O�N5p���6���������(��� � � W X � corresponding to distributions-��� � ���������(� � �q5 WYX � satisfying the conditional indepen-

dencies encoded in , . The conditional distributions in o X
can be written as-��e � 5�e � �������&�(e � ��� W X �

� Z X[ar�] _�`;r&st[�uDv � �!t2w� Z X[�\+] _�`;\^st[auxdy r[�r 2z� Z X[�r] _�` r st[�u v � �!t2w� Z X[\] _�` \ st[�r;{ [au � (3)

extended to | outcomes by independence.
Given a complete data-matrix }~�B/e � �%��������ei��� , the con-

ditional log-likelihood, � X }�� WYX � , with parameters
W�X

is
given by � X /}q� W X � b � ��� 2z� � X �e � � W X �;� (4)

where � X �ez� W X � b �f�3��-��ei��5�e4�6����������el���(� W X �;� (5)

Note that in (3), and hence also in (4), all Z X[\] _�` \ withI���E (standing for nodes that are neither the class variable

nor any of its children) cancel out, since for these terms we
have gl79!�/el���Ugi79!�/eiG� ��ek� for all eiG� . Thus the only relevant
parameters for determining the conditional likelihood are of
the form Z X[�\^] _�`;\ with I�@�"aCn�������&�FE�* , e ! @�"�#��������&�(' ! * andgi79! any configuration of parents -87D! . We order these param-
eters lexicographically and define � X

to be the set of vectors
constructed this way, with Z X[a\^] _�`;\ ��C and

x y \[\ 2w� Z X[�\^] _�`;\ �B#
for all I�@�"�CD�������;�FE�* , el! and all values (configurations) ofgi79! . Note that we require all parameters to be strictly positive.

The model o X
does not contain any notion of the joint dis-

tribution: Terms such as -��� ! 5l-87 ! � , where C.�VI8Q�EHG ,
are undefined and neither are we interested in them. Our
task is prediction of �O� given ������������������� . Heckerman
and Meek call such models Bayesian regression/classification
(BRC) models [Heckerman and Meek, 1997a; 1997b].

For an arbitrary conditional Bayesian network model o X
,

we now define the so-called 	 -model, another set of con-
ditional distributions -�/� � 5�� � �������&�(� � ��� . This model,
which we denote by o�� , is parametrized by vectors

W � in
some set ��� that closely resembles � X

. Each different o X
gives rise to a corresponding o�� , although we do not nec-
essarily have o X �jo�� . For each component Z X[a\^] _�`;\ of
each vector

WYX @f� X
, there is a corresponding componentZ%�[�\�] _�`&\ of the vectors

W �P@q��� . The components Z$�[a\^] _�`;\ take
values in the range ^�����F��� rather than /Cn��#a� . Each vectorW �q@P��� defines the following conditional distribution:-��e � 5�e � �������&�(e ��� � W � � b ���&�¡ �Z%�[r] _�` r s3[�u � v �!32z� ���9 ¢Z%�[\] _�` \ st[auxfy r[�r 2z� /�&�¡ �Z �[�r] _�`&r;st[au � v �!t2z� �&�¡ �Z �[�\+] _�`;\^st[�r { [au � (6)

The model o�� is the set of conditional distributions-��� � 59� � �������&��� � � � W �4� indexed by
W �h@h��� , extended

to | outcomes by independence. Given a data-matrix } , let�=�£/}q� W �¤� be the conditional log-likelihood with parametersW � , defined analogously to (4) with (6) in place of (3).
Theorem 1. o X < o�� .

Proof. From (3) and (6) we get that
W � defined by settingZ �[\] _�` \ �¥�3��Z X[\] _�` \ for all IF��el! and gl79! , indexes the same

conditional distribution as
W�X

.

In words, all the conditional distributions that can be rep-
resented by parameters

W X @N� X
can also be represented

by parameters
W ��@d��� . The converse of Theorem 1, i.e.,o�� < o X

, is true only under some additional conditions
on the network structure, as we explain in Section 4. First we
take a closer look at the 	 -model.

3 The
 -model Viewed as Logistic Regression
Although 	 -models are closely related to and in some cases
formally identical to Bayesian network models, we can also
think of them as predictors that combine the information of
the attributes using the so-called softmax rule [Heckerman
and Meek, 1997b; Ng and Jordan, 2001]. In statistics, such
models have been extensively studied under the name of lo-
gistic regression models, see, e.g. [McLachlan, 1992, p.255].

138

More precisely, let �O�V�¦"�#��������&�('4�§* and let ¨4�����������(¨ �be real-valued random variables. The multiple logistic re-
gression model with dependent variable � � and covariates¨ � ���������(¨ � is defined as the set of conditional distributions-��ei��5�©$�6�������&��© � � b � �&�¡ x �!t2z�4ª [r] ! © !xdy r[�r 2z� �&�¡ x �!t2z�4ª [�r] ! © ! (7)

where the ª [ar�] \ are allowed to take on all values in � . This
defines a conditional model parameterized in � y r%« � . Now, forI�@."aCn�������&�FE�* , ei!=@¬"�#��������;��'¤!�* and gl79! in the set of parent
configurations of ��! , let¨ st[a\ { _�`;\/u b �N # if ��!)�fel! and -879!z�®gi79!C otherwise � (8)

The indicator random variables ¨ s3[\ { _�` \ u thus obtained can
be lexicographically ordered and renamed #%���������°¯ , which
shows that each 	 -model corresponding to a Bayesian net-
work structure , as in (6) is formally identical to the logistic
model (7) with dependent variable ��� and covariates given
by (8). So, for all network structures , , the corresponding 	 -
model o�� is the standard multiple logistic model, where the
input variables for the logistic model are transformations of
the input variables to the 	 -model, the transformation being
determined by the network structure , .

It turns out that the conditional log-likelihood in the 	 -
parametrization is a concave function of the parameters:

Theorem 2. The parameter set � � is convex, and the con-
ditional log-likelihood ���w }�� W �4� is concave, though not
strictly concave.

Proof. The first part is obvious since each parameter can take
values in ^�����F��� . Concavity of ���£/}�� W �k� is a direct con-
sequence of the fact that multiple logistic regression models
are exponential families; see, e.g., [McLachlan, 1992, p.260].
For an example showing that the conditional log-likelihood is
not strictly concave, see [Wettig et al., 2002].

Remark. Non-strictness of the proven concavity may pose
a technical problem in optimization. This can be avoided by
assigning a strictly concave prior on the model parameters
and then maximizing the ‘conditional posterior’ [Grünwald
et al., 2002; Wettig et al., 2002] instead of the likelihood.
One may also prune the model of weakly supported parame-
ters and/or add constraints to arrive at a strictly concave con-
ditional likelihood surface. Our experiments [Wettig et al.,
2002] suggest that for small data samples this should be done
in any case, in order to avoid over-fitting; see also Section 5.
Any constraint added should of course leave the parameter
space a convex set, e.g. a subspace of the full �K� .

Corollary 1. There are no local, non-global, maxima in the
likelihood surface of an 	 -model.

The conditions under which a global maximum exists are
discussed in, e.g., [McLachlan, 1992] and references therein.
A possible solution in cases where no maximum exists is to
introduce a strictly concave prior as discusssed above.

The global conditional maximum likelihood parameters
obtained from training data can be used for prediction of

future data. In addition, as discussed in [Heckerman and
Meek, 1997a], they can be used to perform model selec-
tion among several competing model structures using, e.g.,
the BIC or (approximate) MDL criteria. In [Heckerman and
Meek, 1997a] it is stated that for general conditional Bayesian
network models o X

, “although it may be difficult to deter-
mine a global maximum, gradient-based methods [...] can be
used to locate local maxima”. Theorem 2 shows that if the
network structure , is such that the two models are equiva-
lent, o X ��o�� , we can find even the global maximum of
the conditional likelihood by reparametrizing o X

to the 	 -
model, and using some local optimization method. Thus, the
question under which condition o X �±o�� becomes cru-
cial. It is this question we address in the next section.

Remark. Because the log-transformation is continuous, it
follows (with some calculus) that, if o X �±o�� , then all
maxima of the (concave) conditional likelihood in the 	 -
parameterization are global (and connected) maxima also in
the original parametrization. Nevertheless, the likelihood sur-
face as a function of

W�X @²� X
has some unpleasant proper-

ties (see [Wettig et al., 2002]): it is not concave in general
and, worse, it can have ‘wrinkles’: by these we mean con-
vex subsets � X³

of � X
, such that, under the constraint thatWYX @L� X³

, the likelihood surface does exhibit local, non-
global maxima. This suggests that it is computationally pre-
ferrable to optimize over �´� rather than � X

. Empirical evi-
dence for this is reported in [Greiner and Zhou, 2002].

4 Main Result
By setting Z��[\] _�` \ �S�3��Z X[\] _�` \ , it follows that each distribu-
tion in o X

is also in o�� (Thm. 1). This suggests that, by
doing the reverse transformationZ X[a\^] _�`;\ �f���9 �Z �[a\^] _�`;\ � (9)

we could also show that distributions in o±� are also ino X
. However, � � contains distributions that violate the

‘sum-up-to-one constraint’, i.e., for some
W �.@P��� we havex y \[\ 2w� �&�¡ ¢Z%�[�\^] _�`;\ J��# for some I�@H"aCn�������;�°EBG�* and gi7 ! .

Then the corresponding
W X

is not in � X
. But, since the 	 -

parameterization is redundant (many different
W � index the

same conditional distribution -��µ�5�µ �K@Bo±�), it may still
be the case that the distribution -�^µ�5zµ3� W � � indexed by

W �
is in o X

. Indeed, it turns out that for some network struc-
tures , , the corresponding o�� is such that each distribution
in o � can be expressed by a parameter vector

W � such thatx y \[\ 2w� �&�¡ ¢Z%�[\] _�` \ �¶# for all I8@d"aCn�������;�°EHG/* and gl79! . In
that case, by (9), we do have o X �do�� . Our main result is
that this is the case if , satisfies the following condition:

Condition 1. For all ·�@¸"$#%���������°E�* , there exists ��!´@-87 � such that -87 � < -87 !n¹ "a� ! * .

Remark. Condition 1 implies that the class � � must be a
‘moral node’, i.e., it cannot have a common child with a node
it is not directly connected with. But Condition 1 demands
more than that; see Figures 1 and 2.

139

XX

X0

21 XX

X

1 0

2

Figure 1: A simple Bayesian network (the class variable is
denoted by �O�) satisfying Condition 1 (left); and a network
that does not satisfy the condition (right).

X0

X1 X2 X3

X0

X1 X2 X3

Figure 2: A tree-augmented Naive Bayes (TAN) model satis-
fying Condition 1 (left); and a network that is not TAN (right).
Even though in both cases the class variable ��� is a moral
node, the network on the right does not satisfy Condition 1.

Example 1. Consider the Bayesian networks depicted in Fig-
ure 1. The leftmost network, , � , satisfies Condition 1, the
rightmost network, ,�º , does not. Theorem 4 shows that the
conditional likelihood surface of o X9»

can have local max-
ima, implying that in this case o X J�fo�� . ¼

Examples of network structures that satisfy Condition 1 are
the Naive Bayes (NB) and the tree-augmented Naive Bayes
(TAN) models [Friedman et al., 1997]. The latter is a gen-
eralization of the former in which the children of the class
variable are allowed to form tree-structures; see Figure 2.

Proposition 1. Condition 1 is satisfied by the Naive Bayes
and the tree-augmented Naive Bayes structures.

Proof. For Naive Bayes, we have -87 � < "�� � * for all ·�@"�#��������&�FE�* . For TAN models, all children of the class vari-
able have either one or two parents. For children with only
one parent (the class variable) we can use the same argument
as in the NB case. For any child � � with two parents, let � !
be the parent that is not the class variable. Because � ! is also
a child of the class variable, we have -87 � < -879! ¹ "a��!+* .

Condition 1 is also automatically satisfied if � � only has
incoming arcs1 (‘diagnostic’ models, see [Kontkanen et al.,
2001]). For Bayesian network structures , for which the con-
dition does not hold, we can always add some arcs to arrive
at a structure ,¢G for which the condition does hold (for in-
stance, add an arc from ��� to ��½ in the rightmost network
in Figure 2). Therefore, o X

is always a subset of a larger
model o X �

for which the condition holds. We are now ready
to present our main result (for proof see Appendix A):

Theorem 3. If , satisfies Condition 1, then o X ��o�� .

Together with Corollary 1, Theorem 3 shows that Condi-
tion 1 suffices to ensure that the conditional likelihood sur-
face of o X

has no local (non-global) maxima. Proposition 1

1It is easy to see that in that case the maximum conditional like-
lihood parameters may even be determined analytically.

now implies that, for example, the conditional likelihood sur-
face of TAN models has no local maxima. Therefore, a global
maximum can be found by local optimization techniques.

But what about the case in which Condition 1 does not
hold? Our second result, Theorem 4 (proven in Appendix A)
says that in this case, there can be local maxima:

Theorem 4. Let , º �j� �²¾ � º²¿ � � be the network
structure depicted in Figure 1 (right). There exist data sam-
ples such that the conditional likelihood has local, non-global
maxima over o X9»

.

The theorem implies that o��ÀJ�fo X »
. Thus, Condition 1

is not superfluous. We may now ask whether our condition
is necessary for having o��P��o X

; that is, whether o���J�o X
for all network structures that violate the condition. We

plan to address this intriguing open question in future work.

5 Concluding Remarks
We showed that one can effectively find the parameters max-
imizing the conditional (supervised) likelihood of NB, TAN
and many other Bayesian network models. We did this by
showing that the network structure of these models satisfies
our ‘Condition 1’, which ensures that the conditional distri-
butions corresponding to such models are equivalent to a par-
ticular multiple logistic regression model with unconstrained
parameters. An arbitrary network structure can always be
made to satisfy Condition 1 by adding arcs. Thus, we can
embed any Bayesian network model in a larger model (with
less independence assumptions) that satisfies Condition 1.

Test runs for the Naive Bayes case in [Wettig et al., 2002]
have shown that maximizing the conditional likelihood in
contrast to the usual practice of maximizing the joint (unsu-
pervised) likelihood is feasible and yields greatly improved
classification. Similar results are reported in [Greiner and
Zhou, 2002]. Our conclusions are also supported by theo-
retical analysis in [Ng and Jordan, 2001]. Only on very small
data sets we sometimes see that joint likelihood optimization
outperforms conditional likelihood, the reason apparently be-
ing that the conditional method is more inclined to over-
fitting. We conjecture that in such cases, rather than resorting
to maximizing the joint instead of the conditional likelihood,
it may be preferable to use a simpler model or simplify (i.e.
prune or restrict) the model at hand and still choose its param-
eters in a discriminative fashion. In our setting, this would
amount to model selection using the 	 -parametrization. This
is a subject of our future research.

References
[Friedman et al., 1997] N. Friedman, D. Geiger, and M. Gold-

szmidt. Bayesian network classifiers. Machine Learning,
29:131–163, 1997.

[Greiner and Zhou, 2002] R. Greiner and W. Zhou. Structural ex-
tension to logistic regression: Discriminant parameter learning
of belief net classifiers. In Proceedings of the Eighteenth Annual
National Conference on Artificial Intelligence (AAAI-02), pages
167–173, Edmonton, 2002.

[Grünwald et al., 2002] P. Grünwald, P. Kontkanen, P. Myllymäki,
T. Roos, H. Tirri, and H. Wettig. Supervised posterior distri-

140

butions, 2002. Presented at the Seventh Valencia International
Meeting on Bayesian Statistics, Tenerife, Spain.

[Heckerman and Meek, 1997a] D. Heckerman and C. Meek. Em-
bedded bayesian network classifiers. Technical Report MSR-TR-
97-06, Microsoft Research, 1997.

[Heckerman and Meek, 1997b] D. Heckerman and C. Meek. Mod-
els and selection criteria for regression and classification. In
D. Geiger and P. Shenoy, editors, Uncertainty in Arificial Intel-
ligence 13, pages 223–228. Morgan Kaufmann Publishers, San
Mateo, CA, 1997.

[Kontkanen et al., 2001] P. Kontkanen, P. Myllymäki, and H. Tirri.
Classifier learning with supervised marginal likelihood. In
J. Breese and D. Koller, editors, Proceedings of the 17th In-
ternational Conference on Uncertainty in Artificial Intelligence
(UAI’01). Morgan Kaufmann Publishers, 2001.

[McLachlan, 1992] G.J. McLachlan. Discriminant Analysis and
Statistical Pattern Recognition. John Wiley & Sons, New York,
1992.

[Ng and Jordan, 2001] A.Y. Ng and M.I. Jordan. On discriminative
vs. generative classifiers: A comparison of logistic regression and
naive Bayes. Advances in Neural Information Processing Sys-
tems, 14:605–610, 2001.

[Pearl, 1988] J. Pearl. Probabilistic Reasoning in Intelligent Sys-
tems: Networks of Plausible Inference. Morgan Kaufmann Pub-
lishers, San Mateo, CA, 1988.

[Wettig et al., 2002] H. Wettig, P. Grünwald, T. Roos, P. Myl-
lymäki, and H. Tirri. On supervised learning of Bayesian net-
work parameters. Technical Report HIIT-2002–1, Helsinki In-
stitute for Information Technology (HIIT), 2002. Available at
http://cosco.hiit.fi/Articles/hiit2002-1.ps.

A Proofs
Proof of Theorem 3. We introduce some more notation. For·Á@ "�#��������&�FE�* , let ? � be the maximum number in"aCn�������&�FE�* such that ��>ÃÂÄ@.-87 � , -87 � < -879>ÃÂ ¹ "���>ÃÂ�* .
Such an ? � exists by Condition 1. To see this, note that
the � ! @�-87 � mentioned in Condition 1 must lie in the set"��O�������a������������>Ä* (otherwise �O�H@L-87 � ���O�SJ@L-879! , so-87 � J< -879! ¹ "���!+* , contradiction).

Condition 1 implies that gi7 � is completely determined by
the pair /e > Â%�/gi7 > Â�� . We can therefore introduce functionsÅ � mapping �el>ÃÂ§� gi79>ÃÂ&� to the corresponding gi7 � . Hence,
for all e´�V�ei������������ek���:� and ·�@¬"�#%�������;�°E�* we havegi7 � � Å � /ei>ÃÂ6�/gl7$>ÃÂ��&� (10)

We introduce, for all IK@N"�CD�������;�FE�* and for each con-
figuration gl7 ! of -87 ! , a constant Æ !] _�` \ and define, for anyW �q@P��� ,Z s3Ç:u[\] _�` \ b ��Z �[\] _�` \4È Æ !] _�`;\ � ��FÉ >ÃÂ(2¤! Æ �] Ê Â st[a\ { _�`;\�u � (11)

The parameters Z s3Ç:u[\] _�` \ constructed this way are combined to
a vector

W s3Ç:u
which is clearly a member of �´� .

Having introduced this notation, we now show that no mat-
ter how we choose the constants Æ !] _�`;\ , for all

W � and corre-
sponding

W s3Ç:u
we have �0�=/}�� W s3Ç:u �����0�=/}�� W �k� .

We first show that, for all possible vectors e and the corre-
sponding parent configurations, no matter how the Æ !] _�`&\ are
chosen, it holds that�� !324� Z s3Ç:u[�\^] _�`;\ � �� !t2¤� Z �[a\+] _�`;\¤È Æ �] _�` r � (12)

To derive (12) we substitute all terms of
x �!324� Z s3Ç:u[\] _�` \ by their

definition (11). Clearly, for all ·P@f"�#��������;�°E�* , there is ex-
actly one term of the form Æ �] _�` Â that appears in the sum with
a positive sign. Since for each ·²@�"�#��������;�°E�* there exists
exactly one I�@¬"aCn�������;�°E�* with ? � ��I , it must be the case
that for all ·P@�"�#��������&�°E�* , a term of the form Æ �] Ê Â st[\ { _�` \ u
appears exactly once in the sum with a negative sign. By (10)
we have Æ �] Ê Â s3[�\ { _�`;\/u �dÆ �] _�` Â . Therefore all terms Æ �] _�` Â that
appear once with a positive sign also appear once with a neg-
ative sign. It follows that, except for Æ �] _�` r , all terms Æ �] _�` Â
cancel. This establishes (12). By plugging in (12) into (6), it
follows that �0�£/}�� W s3Ç:u �0�d�0�w }�� W �¤� for all } .

Now set, for all el! and gi79! ,Z X[\] _�` \ �f���9 �Z s3Ç:u[\] _�` \ � (13)

We show that we can determine the constants Æ !] _�` \ such that
for all I�@."aCn�������&�°E�* and gl7 ! , the ’sum up to one’ constraint
is satisfied, i.e., we havey \�[\ 2z� Z X[\] _�` \ �B#%� (14)

We achieve this by sequentially determining values for Æ !] _�`;\
in a particular order.

We need some additional terminology: we say ‘ Æ�! is deter-
mined’ if for all configurations gl7 ! of -87 ! , we have already
determined Æ !] _�` \ . We say ‘ Æ ! is undetermined’ if we have de-
termined Æ !] _�`;\ for no configuration gl79! of -879! . We say ‘ Æ�! is
ready to be determined’ if Æ�! is undetermined and at the same
time all Æ � with ? � �fI have been determined.

We note that as long as some Æ ! with I�@f"aCn�������&�°E�* are
undetermined, there must exist Æ�!3� that are ready to be de-
termined. To see this, first take any Iq@L"aCn�������;�°E�* withÆ ! undetermined. Either Æ ! itself is ready to be determined
(in which case we are done), or there exists ·²@U"�#%�������(E�*
with ? � ��I (and hence ��!�@®-87 �) such that Æ � is undeter-
mined. If Æ � is ready to be determined, we are done. Oth-
erwise we repeat the argument, move forward in , restricted
to "a� � ���������(� � * and (because , is acyclic) within E steps
surely find a Æ;Ë that is ready to be determined.

We now describe an algorithm that sequentially assigns
values to Æ !] _�` \ such that (14) is satisfied. We start with all Æ�!
undetermined and repeat the following steps:

WHILE there exists ÌFÍ , Î¤Ï ��Ð§Ñ;ÒFÒFÒFÑ^Ó � , that is undetermined
DO

1. Pick the largest Î such that Ì Í is ready to be determined.

2. Set, for all configurations Ô9Õ%Í of Ö¢Õ�Í , Ì Í�× Ø°Ù \ such thatÚ®Û \Ü;\ ÝkÞ$ßaàÜ;\ × Ø°Ù \)á�â holds.

DONE

141

The algorithm loops E È # times and then halts. Step 2 does
not affect the values of Æ �] _�` Â for any ·��/gl7 � such that Æ �] _�` Â
has already been determined. Therefore, after the algorithm
halts, (14) holds.

Let
W �V@V��� . Each choice of constants Æ !] _�` \ determines

a corresponding vector
W sãÇ:u

with components given by (11).
This in turn determines a corresponding vector

W8X
with com-

ponents given by (13). In Stage 2 we showed that we can take
the Æ !] _�`;\ such that (14) holds. This is the choice of Æ !] _�`;\
which we adopt. With this particular choice,

W8X
indexes

a distribution in o X
. By applying the log-transformation

to the components of
W�X

we find that for any } of any
length, � X /}�� WYX �O�±�=�£/}�� W s3Ç:u � , where � X /}�� WYX � de-
notes the conditional log-likelihood of

W8X
as given by sum-

ming the logarithm of (3). The result of Stage 1 now im-
plies that

WYX
indexes the same conditional distribution asW � . Since

W ��@h��� was chosen arbitrarily, this shows thato � < o X
. Together with Theorem 1 this concludes the

proof.

Proof (sketch) of Theorem 4. Use the rightmost network in
Figure 1 with structure ��� ¾ �Oº ¿ ��� . Let the data be}~�V(^#���#%��#a�&��^#���#��°ä%�&���ä¡�°äD��#��;���ä¡�Fä¡�°ä����9� Note that � � and��� always have the same value. We first show that with this
data, there are four local, non-connected suprema of the con-
ditional likelihood.

We are interested in predicting the value of ��� given ��� ,
and � º . The parameter defining the distribution of � � has no
effect on conditional predictions and we can ignore it. For the
remaining five parameters we use the following notation:Z6º b �d-���O���Uä%�;�Z º] � { � b �d-����º��Uä�56�����V#%�(���Ã�V#a�&�Z º] � { º b �d-��� º �Uä�56� � �V#%�(� � �Uä%�&�Z º] º { � b �d-����º��Uä�56�����Uä¡�(���Ã�V#a�&�Z º] º { º b �d-����º��Uä�56�����Uä¡�(���Ã�Uä%�&� (15)

The conditional log-likelihood can be written as� X }�� W X �0�fåk�#��.Z º ��Z º] � { � �(Z º] º { � � È åk/Z º ��Z º] º { º ��Z º] � { º �;�
(16)

whereåk/e)��©k�°æ$� b �dç£/e)��©k�°æ$� È ç£�ez��#��¬©l��#¢�¬æ9�;� (17)

and ç£/e)�(©l�°æ$� b �f�3� en©en© È ^#��¬el�^æ � (18)

Figure 3 illustrates functions å4�ez��©k�(æ9� at ed�èCD�êé . In (16)
each parameter except Z§º appears only once. Thus, for a fixedZ6º we can maximize each term separately. ¿From Lemma 1
below it follows that the supremum of the log-likelihood withZ º fixed is �3�z�#¢�.Z º � È �3�)�Z º � , which achieves its maximum
value ��ä=�t��ä at Z6º���Cn� é . Furthermore, the lemma shows that
the log-likelihood approaches its supremum when Z º] º { � @"aCn��#%*���Z º] � { º @."aCn��#%* , Z º] � { � ¾ Z º] º { � , and Z º] º { º ¾ Z º] � { º .

Setting ©O�fCn� é results inë(ì ��ílî�í4� åk/e)�°CD�êé¡�(æ9�=���3� eäY�.e �À�3��e)� (19)

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9y 0
 0.2

 0.4
 0.6

 0.8
 1

z

-5
-4
-3
-2
-1
 0

Figure 3: Function g(x,y,z) given by (17) with e´�fCn� é .

Therefore setting either Z º] � { � or Z º] º { º to CD�êé results in
a smaller supremum of the log-likelihood than the above
choices. Consequently, the four suprema are separated by ar-
eas where the log-likelihood is smaller, i.e., the suprema are
local and not connected.

To conclude the proof we still need to address two is-
sues: (a) the four local suprema give the same conditional
log-likelihood ��ä£�3��ä , and (b), they are suprema, not max-
ima (not achieved by any

W�X @j� X
). To deal with (a),

consider data }�G consisting of 'z� repetitions of ^#%��#%��#a� ,' º repetitions of �#%��#��°ä�� , ' ½ repetitions of �ä¡�Fä¡��#�� and'4ï repetitions of ä¡�Fä¡�Fä%� . By doing a slightly more in-
volved analysis, one can show that, for some choices of'z���('¤º§�('¤½§��' ï , the supervised log-likelihood still has four
suprema, but they have different likelihood values. To deal
with (b), let }�G G be equal to }�G but with four extra data vec-
tors �#%�°äD��#��;���ä¡��#%��#��;�a^#%�Fä¡�Fä%�;�a äD��#%�Fä%� . If 'w����'¤º%��'¤½ and ' ï
are chosen large enough, the supervised likelihood for }´G G has
four maxima (rather than suprema), not all of which achieve
the same supervised likelihood. We omit further details.

Lemma 1. With Cq�Be��N# fixed and © and æ both varying
between 0 and 1, the supremum of å4�ez��©k�(æ9� defined by (17)
is given by ë�ì ��ílð { î�í¤� å4�e)�(©k�(æ9�£���3�)�ek�;� (20)

The function approaches its supremum when æ�@®"aCn��#§* , and© ¾ æ . That is, �tñ3ò�ð&ó°�¤åk/e)��©k�°C��=�f�3ñ3òOð&ô&�låk/e)��©k��#a�0���3��e .

Proof. Differentiating twice wrt. æ givesõ ºõ º æ å4�e)�(©k�(æ9�£� ^#��¬el� º�ei© È ^#��¬el��æ$� ºÈ ^#��¬el� º ez^#��¬©D� È ^#��¬el�&�#��²æ$�(� º � (21)

which is always positive and the function achieves its maxi-
mum values at æO@¬"�CD��#%* . At these two points derivating wrt.
y yields õõ © å4�e)�(©k�(C��0� e��ö#^#��¬©D�&�#��.ei©¡� �õõ © å4�e)�(©k��#a�0� #��¬e©4�en© È #��.ek� � (22)

Since in the first case the derivative is always negative, and
in the second case the derivative is always positive, åk/e)�(©l�°C��
increases monotonically as © ¾ C , and å4�ez��©k��#�� increases
monotonically as © ¾ # . In both cases the limiting value is�3�)�ek� .

142

Publication II

Hannes Wettig, Petri Kontkanen and Petri Myllymäki

Calculating the Normalized Maximum Likelihood Distribution
for Bayesian Forests

IADIS International Journal on Computer Science and Information Sys-
tems 2 (2007) 2 (October)

c© 2007

143

144

In Proceedings of the IADIS International Conference Intelligent Systems and Agents 2007. Lisbon, Portugal,

2007.

Calculating the Normalized Maximum Likelihood

Distribution for Bayesian Forests

Hannes Wettig Petri Kontkanen
Petri Myllymäki

Complex Systems Computation Group (CoSCo)
Helsinki Institute for Information Technology (HIIT)

University of Helsinki & Helsinki University of Technology
P.O.Box 68 (Department of Computer Science)

FIN-00014 University of Helsinki, Finland
{Firstname}.{Lastname}@hiit.fi

ABSTRACT

When learning Bayesian network structures from sample data, an important issue is how to evaluate
the goodness of alternative network structures. Perhaps the most commonly used model (class)
selection criterion is the marginal likelihood, which is obtained by integrating over a prior distribution
for the model parameters. However, the problem of determining a reasonable prior for the parameters
is a highly controversial issue, and no completely satisfying Bayesian solution has yet been presented
in the non-informative setting. The normalized maximum likelihood (NML), based on Rissanen’s
information-theoretic MDL methodology, offers an alternative, theoretically solid criterion that is
objective and non-informative, while no parameter prior is required. It has been previously shown
that for discrete data, this criterion can be computed in linear time for Bayesian networks with no
arcs, and in quadratic time for the so called Naive Bayes network structure. Here we extend the
previous results by showing how to compute the NML criterion in polynomial time for tree-structured
Bayesian networks. The order of the polynomial depends on the number of values of the variables,
but neither on the number of variables itself, nor on the sample size.

KEYWORDS

Machine Learning, Bayesian Networks, Minimum Description Length, Normalized Maximum Likeli-
hood.

1 INTRODUCTION

We consider the problem of learning a Bayesian network structure, based on a sample of data collected
from the domain to be studied. We focus on the score-based approach, where first a model selection
score is defined, yielding a goodness criterion that can be used for comparing different model structures,
and any search method of choice can then be used for finding the structure with the highest score.

In this paper we study the problem of choosing and computing an appropriate model selection
criterion. Naturally, any reasonable criterion must possess some desirable optimality properties. For
a Bayesian, the most obvious choice is to use the model structure posterior, given the data and some
model structure prior that has to be fixed in advance. Assuming a uniform prior over the possible
structures, this leaves us with the marginal likelihood, which is the most commonly used criterion
for learning Bayesian networks. Calculation of the marginal likelihood requires us to define a prior
distribution over the parameters defined by the model structure under consideration. Under certain

145

assumptions, computing the marginal likelihood is then straightforward, see e.g. [1, 2]. Perhaps
somewhat surprisingly, determining an adequate prior for the model parameters of a given class, in
an objective manner has turned out to be a most difficult problem.

The uniform parameter prior sounds like the obvious candidate for a non-informative prior distri-
bution, but it is not transformation-invariant, and produces different marginal likelihood scores for
dependence-equivalent model structures [2]. This is due to the fact that there is no objective way of
defining uniformity, but any prior can be uniform at most with respect to a chosen representation. The
problem of transformation-invariance can be remedied by using the prior distribution suggested in [3],
but this still leaves us with a single parameter, the equivalent sample size, the value of which is highly
critical with respect to the result of the model structure search. Alternatively, one might resort to
using the transformation-invariant Jeffreys prior, but although it can in the Bayesian network setting
be formulated explicitly [4], computing it appears to be quite difficult in practice.

For the above reasons, in this paper we take the alternative approach of using the information-
theoretic normalized maximum likelihood (NML) criterion [5, 6] as the model selection criterion. The
NML score is – under certain conditions – asymptotically equivalent to the marginal likelihood with
the Jeffreys prior [6], but it does not require us to define a prior distribution on the model parameters.
Based on the data at hand only, it is fully objective, non-informative and transformation-invariant.
What is more, the NML distribution can be shown to be the optimal distribution in a certain intuitively
appealing sense. It may be used for selection of a model class among very different candidates. We
need not assume a model family of nested model classes or the like, but we may compete against each
other any types of model classes for which we can compute the NML distribution. Consequently, the
NML score for Bayesian networks is of great importance both as a theoretically interesting problem
and as a practically useful model selection criterion.

Although the NML criterion yields a theoretically very appealing model selection criterion, its
usefulness in practice depends on the computational complexity of the method. In this paper we
consider Bayesian network models for discrete data, where all the conditional distributions between
the variables are assumed to be multinomial. For a single multinomial variable (or, an empty Bayesian
network with no arcs), the value of the NML criterion can be computed in linear time [7], and for
the Naive Bayes structure in quadratic time [8]. In this paper we consider more general forest-
shaped network structures, and introduce an algorithm for computing the NML score in polynomial
time – where the order of the polynomial depends on the number of possible values of the network
variables. Although the problem of computing the NML for general Bayesian network structures
remains unsolved, this work represents another step towards that goal.

The paper is structured as follows. In Section 2 we briefly review some basic properties of the NML
distribution. Section 3 introduces the Bayesian Forest model family and some inevitable notation.
The algorithm that calculates the NML distribution for Bayesian forests is developed in Section 4 and
summarized in Section 5. We close with the concluding remarks of Section 6.

2 PROPERTIES OF THE NML DISTRIBUTION

The NML distribution, founding on the Minimum Description Length (MDL) principle, has several
desirable properties. Firstly, it automatically protects against overfitting in the model class selection
process. Secondly, there is no need to assume that there exists some underlying “true” model, while
most other statistical methods do: in NML the model class is only used as a technical device to
describe the data, not as a hypothesis. Consequently, the model classes amongst which to choose are
allowed to be of utterly different types; any collection of model classes may be considered as long as
the corresponding NML distributions can be computed. For this reason we find it important to push
the boundaries of NML computability and develop algorithms that extend to more and more complex
model families.

NML is closely related to Bayesian inference. There are, however, some fundamental differences
dividing the two, the most important being that NML is not dependent on any prior distribution, it
only uses the data at hand. For more discussion on the theoretical motivations behind NML and the
MDL principle see, e.g., [6, 9, 10, 11, 12, 13].

146

In the following, we give the definition of the NML distribution and discuss some of its theoretical
properties.

2.1 Definition of a Model Class and Family

Let xn = (x1, . . . , xn) be a data sample of n outcomes, where each outcome xj is an element of some
space of observations X . The n-fold Cartesian product X ×· · ·×X is denoted by Xn, so that xn ∈ Xn.
Consider a set Θ ⊆ Rd, where d is a positive integer. A class of parametric distributions indexed by
the elements of Θ is called a model class. That is, a model class M is defined as

M = {P (· | θ) : θ ∈ Θ}, (1)

and the set Θ is called a parameter space.
Consider a set Φ ⊆ Re, where e is a positive integer. Define a set F by

F = {M(φ) : φ ∈ Φ}. (2)

The set F is called a model family, and each of the elements M(φ) is a model class. The associated
parameter space is denoted by Θφ. The model class selection problem can now be defined as a process
of finding the parameter vector φ, which is optimal according to some pre-determined criteria.

2.2 The NML Distribution

One of the most theoretically and intuitively appealing model class selection criteria is the Normalized
Maximum Likelihood. Denote the parameter vector that maximizes the likelihood of data xn for a
given model class M(φ) by θ̂(xn,M(φ)):

θ̂(xn,M(φ)) = argmax
θ∈Θφ

{P (xn | θ)}. (3)

The normalized maximum likelihood (NML) distribution [5] is now defined as

PNML(x
n | M(φ)) =

P (xn | θ̂(xn,M(φ)))

C(M(φ), n)
, (4)

where the normalizing term C(M(φ), n) in the case of discrete data is given by

C(M(φ), n) =
∑

yn∈Xn

P (yn | θ̂(yn,M(φ))), (5)

and the sum goes over the space of data samples of size n. If the data is continuous, the sum is
replaced by the corresponding integral. From this definition, it is immediately evident that NML is
invariant with respect to any kind of parameter transformation, since such transformation does not
affect the maximum likelihood P (xn | θ̂(xn,M(φ))).

In the MDL literature – which views the model class selection problem as a task of minimizing the
resulting code length – the minus logarithm of (4) is referred to as the stochastic complexity of the
data xn given model class M(φ) and the logarithm of the normalizing sum log C(M(φ), n) is referred
to as the parametric complexity or (minimax) regret of M(φ).

The NML distribution (4) has several important theoretical optimality properties. The first one
is that NML provides a unique solution to the minimax problem posed in [5],

min
P̂

max
xn

log
P (xn | θ̂(xn,M(φ)))

P̂ (xn | M(φ))
(6)

i.e., the minimizing P̂ is the NML distribution, and it assigns a probability to any data that differs
from the highest achievable probability within the model class – the maximum likelihood

147

P (xn | θ̂(xn,M(φ))) – by the constant factor C(M(φ), n). In this sense, the NML distribution can
be seen as a truly uniform prior, with respect to the data itself, not its representation by a model
class M(φ). In other words, the NML distribution is the minimax optimal universal model. The term
universal model in this context means that the NML distribution represents (or mimics) the behaviour
of all the distributions in the model class M(φ). Note that the NML distribution itself does not have
to belong to the model class, and typically it does not.

A related property of NML was proven in [11]. It states that NML also minimizes

min
P̂

max
g

Eg log
P (xn | θ̂(xn,M(φ)))

P̂ (xn | M(φ))
(7)

where the expectation is taken over xn and g is the worst-case data generating distribution.

3 THE BAYESIAN FOREST MODEL FAMILY

We assume m variables X1, . . . , Xm with given value cardinalities K1, . . . ,Km. We further assume a
data matrix xn = (xji) ∈ Xn, 1 ≤ j ≤ n and 1 ≤ i ≤ m, given.

A Bayesian network structure G encodes independence assumptions so that if each variable Xi is
represented as a node in the network, then the joint probability distribution factorizes into a product of
local probability distributions, one for each node, conditioned on its parent set. We define a Bayesian
forest (BF) to be a Bayesian network structure G on the node set X1, . . . , Xm which assigns at most
one parent Xpa(i) to any node Xi. Consequently, a Bayesian tree is a connected Bayesian forest and
a Bayesian forest breaks down into component trees, i.e. connected subgraphs. The root of each such
component tree lacks a parent, in which case we write pa(i) = ∅.

The parent set of a node Xi thus reduces to a single value pa(i) ∈ {1, . . . , i − 1, i + 1, . . . ,m, ∅}.
Let further ch(i) denote the set of children of node Xi in G and ch(∅) denote the “children of none”,
i.e. the roots of the component trees of G.

The corresponding model family FBF can be indexed by the network structure G ∈ ΦBF ⊂ N ⊂ R
according to some enumeration of all Bayesian forests on (X1, . . . , Xm):

FBF = {M(G) : G is a forest}. (8)

Given a forest model classM(G), we index each model by a parameter vector θ in the corresponding
parameter space ΘG .

ΘG = {θ = (θikl) : θikl ≥ 0,
∑

l

θikl = 1, i = 1, . . . ,m, k = 1, . . . ,Kpa(i), l = 1, . . . ,Ki}, (9)

where we define K∅ := 1 in order to unify notation for root and non-root nodes. Each such θikl defines
a probabilty

θikl = P (Xi = l | Xpa(i) = k, M(G), θ) (10)

where we interpret X∅ = 1 as a null condition.
The joint probability distribution that such a model M = (G, θ) assigns to a data vector x =

(x1, . . . , xm) becomes

P (x | M(G),θ) =
m∏

i=1

P (Xi = xi | Xpa(i) = xpa(i),M(G),θ) =
m∏

i=1

θi,xpa(i),xi . (11)

For a sample xn = (xji) of n vectors xj we define the corresponding frequencies

fikl := |{j : xji = l ∧ xj,pa(i) = k}| and fil := |{j : xji = l}| =
Kpa(i)∑

k=1

fikl. (12)

148

By definition, for any component tree root Xi we have fil = fi1l. The probability assigned to an i.i.d.
sample xn can then be written as

P (xn | M(G),θ) =
m∏

i=1

Kpa(i)∏

k=1

Ki∏

l=1

θfikl

ikl , (13)

which is maximized at

θ̂ikl(x
n,M(G)) = fikl

fpa(i),k
, (14)

where we define f∅,1 := n. The maximum data likelihood thereby is

P (xn | θ̂(xn,M(G))) =
m∏

i=1

Kpa(i)∏

k=1

Ki∏

l=1

(
fikl

fpa(i),k

)fikl

. (15)

4 CALCULATING THE NML DISTRIBUTION

The goal is to calculate the NML distribution PNML(x
n | M(G)) defined in (4). This consists of

calculating the maximum data likelihood (15) and the normalizing term C(M(G), n) given in (5). The
former involves frequency counting – one sweep through the data – and multiplication of the appro-
priate values. This can be done in time O(n +

∑
i KiKpa(i)). The latter involves a sum exponential

in n, which clearly makes it the computational bottleneck of the algorithm.
Our approach is to break up the normalizing sum in (5) into terms corresponding to subtrees with

given frequencies in either their root or its parent. We then calculate the complete sum by sweeping
through the graph once, bottom-up. The exact ordering will be irrelevant, as long as we deal with
each node before its parent. Let us now introduce the needed notation.

Let G be a given Bayesian forest. In order to somewhat shorten our notation, from now on we do not
write out the model class M(G) anymore, as it may be assumed fixed. We thus write e.g. P (xn | θ),
meaning P (xn | θ,M(G)). When in the following we restrict to subsets of the attribute space, we
implicitly restrict the model class accordingly, e.g. in (16) below, we write P (xn

sub(i) | θ̂(xn
sub(i))) as a

short notation for P (xn
sub(i) | θ̂(xn

sub(i)),M(Gsub(i))).
For any node Xi denote the subtree rooting in Xi by Gsub(i) and the forest built up by all descen-

dants of Xi by Gdsc(i). The corresponding data domains are Xsub(i) and Xdsc(i), respectively. Denote
the partial normalizing sum over all n-instantiations of a subtree by

Ci(n) :=
∑

xn
sub(i)

∈Xn
sub(i)

P (xn
sub(i) | θ̂(xn

sub(i))) (16)

and for any vector xn
i ∈ Xn

i with frequencies fi = (fi1, . . . , fiKi) we define

Ci(n | fi) :=
∑

xn
dsc(i)

∈Xn
dsc(i)

P (xn
dsc(i),x

n
i | θ̂(xn

dsc(i),x
n
i)) (17)

to be the corresponding sum with fixed root instantiation, summing only over the attribute space
spanned by the descendants on Xi. Note, that we condition on fi on the left-hand side, and on xn

i on
the right-hand side of the definition. This needs to be justified. Interestingly, while the terms in the
sum depend on the ordering of xn

i , the sum itself depends on xn
i only through its frequencies fi. To

see this pick any two representatives xn
i and x̄n

i of fi and find, e.g. after lexicographical ordering of
the elements, that

{(xn
i ,x

n
dsc(i)) : x

n
dsc(i) ∈ Xn

dsc(i)} = {(x̄n
i ,x

n
dsc(i)) : x

n
dsc(i) ∈ Xn

dsc(i)} (18)

149

Next, we need to define corresponding sums over Xsub(i) with the frequencies at the subtree root
parent Xpa(i) given. For any fpa(i) ∼ xn

pa(i) ∈ Xn
pa(i) define

Li(n | fpa(i)) :=
∑

xn
sub(i)

∈Xn
sub(i)

P (xn
sub(i) | xn

pa(i), θ̂(x
n
sub(i),x

n
pa(i))) (19)

Again, this is well-defined since any other representative x̄n
pa(i) of fpa(i) yields summing the same terms

in different order.
After having introduced this notation, we now briefly outline the algorithm and – in the following

subsections – give a more detailed description of the steps involved. As stated before, we go through
G bottom-up. At each inner node Xi, we receive Lj(n | fi) from each child Xj , j ∈ ch(i). Correspond-
ingly, we are required to send Li(n | fpa(i)) up to the parent Xpa(i). At each component tree root Xi

we then calculate the sum Ci(n) for the whole connectivity component and then combine these sums
to get the normalizing sum C(n) for the complete forest G.

4.1 Leaves

It turns out, that for a leave node Xi we can calculate the terms Li(n | fpa(i)) without listing the
frequencies fi at Xi itself. The parent frequencies fpa(i) split the n data vectors into Kpa(i) subsets of
sizes fpa(i),1, . . . , fpa(i),Kpa(i)

and each of them can be modelled independently as a multinomial. We
have

Li(n | fpa(i)) =
Kpa(i)∏

k=1

CMN(Ki, fpa(i),k). (20)

where

CMN(Ki, n
′) =

∑

xi∈Xi

P (xn′
i | θ̂(xn′

i),MMN(Ki)) =
∑

xi∈Xi

Ki∏

l=1

(
fil
n′

)fil

(21)

is the normalizing sum (5) for the multinomial model class MMN(Ki) for a single discrete variable
with Ki values, see e.g. [8, 14, 7] for details. [7] derives a simple recurrence for these terms, namely

CMN(K + 2, n′) = CMN(K + 1, n′) +
n′

K
CMN(K,n′), (22)

which we can use to precalculate all CMN(Ki, n
′) (for n′ = 0, . . . , n) in linear time each, i.e. in quadratic

time altogether, for details see [7].

4.2 Inner Nodes

For inner nodes Xi we divide the task into two steps. First collect the messages Lj(n | fi) sent by
each child Xj ∈ ch(i) into partial sums Ci(n | fi) over Xdsc(i), then “lift” these to sums Li(n | fpa(i))
over Xsub(i) which are the messages to the parent.

The first step is simple. Given an instantiation xn
i at Xi or, equivalently, the corresponding

frequencies fi, the subtrees rooting in the children ch(i) of Xi become independent of each other.

150

Thus we have

Ci(n | fi) =
∑

xn
dsc(i)

∈Xn
dsc(i)

P (xn
dsc(i),x

n
i | θ̂(xn

dsc(i),x
n
i)) (23)

=P (xn
i | θ̂(xn

dsc(i),x
n
i))

 ∑

xn
dsc(i)

∈Xn
dsc(i)

∏

j∈ch(i)

P (xn
dsc(i)|sub(j) | xn

i , θ̂(x
n
dsc(i),x

n
i))

 (24)

=P (xn
i | θ̂(xn

dsc(i),x
n
i))

∏

j∈ch(i)

 ∑

xn
sub(j)

∈Xn
sub(j)

P (xn
sub(j) | xn

i , θ̂(x
n
dsc(i),x

n
i))

 (25)

=

Ki∏

l=1

(
fil
n

)fil ∏

j∈ch(i)

Lj(n | fi) (26)

where xn
dsc(i)|sub(j) is the restriction of xdsc(i) to columns corresponding to nodes in Gsub(j). We have

used (17) for (23), (11) for (24) and (25) and finally (15) and (19) for (26).
Now we calculate the outgoing messages Li(n | fpa(i)) from the incoming messages we have just

combined into Ci(n | fi). This is the most demanding part of the algorithm, as we need to list all
possible conditional frequencies, of which there are O(nKiKpa(i)−1) many, the −1 being due to the
sum-to-n constraint. For fixed i, we arrange the conditional frequencies fikl into a matrix F = (fikl)
and define its marginals

ρ(F) :=

(∑

k

fik1, . . . ,
∑

k

fikKi

)
and γ(F) :=

(∑

l

fi1l, . . . ,
∑

l

fiKpa(i)l

)
(27)

to be the vectors obtained by summing the rows of F and the columns of F, respectively. Each such
matrix then corresponds to a term Ci(n | ρ(F)) and a term Li(n | γ(F)). Formally we have

Li(n | fpa(i)) =
∑

F:γ(F)=fpa(i)

Ci(n | ρ(F)). (28)

4.3 Component Tree Roots

For a component tree root Xi ∈ ch(∅) we do not need to pass any message upward. All we need is
the complete sum over the component tree

Ci(n) =
∑

fi

n!

fi1! . . . fiKi !
Ci(n | fi) (29)

where the Ci(n | fi) are calculated using (26). The summation goes over all non-negative integer
vectors fi summing to n. The above is trivially true since we sum over all instantiations xn

i of Xn
i and

group like terms – corresponding to the same frequency vector fi – keeping track of their respective
count, namely n!/(fi1! . . . fiKi !).

5 THE ALGORITHM

For the complete forest G we simply multiply the sums over its tree components. Since these are
independent of each other, in analogy to (23)-(26) we have

C(n) =
∏

i∈ch(∅)
Ci(n). (30)

Algorithm 1 collects all the above into pseudo-code.

151

Algorithm 1
Computing PNML(x

n) for a Bayesian Forest G.
1: Count all frequencies fikl and fil from the data xn

2: Compute P (xn | θ̂(xn))=
∏m

i=1

∏Kpa(i)

k=1

∏Ki

l=1

(
fikl

fpa(i),k

)fikl

3: for K ′ = 1, . . . ,Kmax := max
i:Xi is a leaf

{Ki} and n′ = 0, . . . , n do

4: Compute CMN(K
′, n′) using recurrence (22)

5: end for
6: for each node Xi in some bottom-up order do
7: if Xi is a leaf then
8: for each frequency vector fpa(i) of Xpa(i) do

9: Compute Li(n | fpa(i)) =
∏Kpa(i)

k=1 CMN(Ki, fpa(i)k)
10: end for
11: else if Xi is an inner node then
12: for each frequency vector fi of Xi do

13: Compute Ci(n | fi) =
∏Ki

l=1

(
fil
n

)fil ∏
j∈ch(i) Lj(n | fi)

14: end for
15: initialize Li ≡ 0
16: for each non-negative Ki ×Kpa(i) integer matrix F with entries summing to n do
17: Li(n | γ(F)) += Ci(n | ρ(F))
18: end for
19: else if Xi is a component tree root then

20: Compute Ci(n) =
∑

fi

∏Ki

l=1

(
fil
n

)fil ∏
j∈ch(i) Lj(n | fi)

21: end if
22: end for
23: Compute C(n) =∏i∈ch(∅) Ci(n)
24: Output PNML(x

n) = P (xn|θ̂(xn))
C(n)

The time complexity of this algorithm is O(nKiKpa(i)−1) for each inner node, O(n(n + Ki)) for
each leaf and O(nKi−1) for a component tree root of G. When all m′ < m inner nodes are binary it
runs in O(m′n3), independent of the number of values of the leaf nodes. This is polynomial wrt. the
sample size n, while applying (5) directly for computing C(n) requires exponential time. The order of
the polynomial depends on the attribute cardinalities: the algorithm is exponential wrt. the number
of values a non-leaf variable can take.

Finally, note that we can speed up the algorithm when G contains multiple copies of some subtree.
Also we have Ci/Li(n | fi) = Ci/Li(n | π(fi)) for any permutation π of the entries of fi. However,
this does not lead to considerable gain, at least in O-notation. Also, we can see that in line 16 of the
algorithm we enumerate all frequency matrices F, while in line 17 we sum the same terms whenever the
marginals of F are the same. Unfortunately, computing the number of non-negative integer matrices
with given marginals is a #P-hard problem already when one of the matrix dimensions is fixed to 2,
as proven in [15]. This suggests that for this task there may not exist an algorithm that is polynomial
in all input quantities. The algorithm presented here is polynomial in both the sample size n and the
graph size m. For attributes with relatively few values, the polynomial is of tolerable degree.

6 CONCLUSION

The information-theoretic normalized maximum likelihood (NML) criterion offers an interesting, non-
informative approach to Bayesian network structure learning. It has some links to the Bayesian
marginal likelihood approach — NML converges asymptotically to the marginal likelihood with the

152

Jeffreys prior — but it avoids the technical problems related to parameter priors as no explicitly
defined prior distributions are required. Unfortunately a straightforward implementation of the cri-
terion requires exponential time. In this paper we presented a computationally feasible algorithm
for computing the NML criterion for tree-structured Bayesian networks: Bayesian trees and forests
(collections of trees).

The time complexity of the algorithm presented here is polynomial with respect to the sample
size and the number of domain variables, but the order of the polynomial depends on the number of
values of the inner nodes in the tree to be evaluated, which makes the algorithm impractical for some
domains. However, we consider this result as an important extension of the earlier results which were
able to handle only Naive Bayes structures, i.e., Bayesian trees of depth one with no inner nodes. In
the future we plan to test the validity of the suggested NML approach in practical problem domains,
and we also wish to extend this approach to more complex Bayesian network structures.

7 ACKNOWLEDGEMENTS

This work was supported in part by the Finnish Funding Agency for Technology and Innovation under
projects PMMA, KUKOT and SIB, by the Academy of Finland under project CIVI, and by the IST
Programme of the European Community, under the PASCAL Network of Excellence, IST-2002-506778.
This publication only reflects the authors’ views.

References

[1] G. Cooper and E. Herskovits. A Bayesian method for the induction of probabilistic networks
from data. Machine Learning, 9:309–347, 1992.

[2] D. Heckerman, D. Geiger, and D.M. Chickering. Learning Bayesian networks: The combination
of knowledge and statistical data. Machine Learning, 20(3):197–243, September 1995.

[3] W. Buntine. Theory refinement on Bayesian networks. In B. D’Ambrosio, P. Smets, and P. Bonis-
sone, editors, Proceedings of the Seventh Conference on Uncertainty in Artificial Intelligence,
pages 52–60. Morgan Kaufmann Publishers, 1991.

[4] P. Kontkanen, P. Myllymäki, T. Silander, H. Tirri, and P. Grünwald. On predictive distributions
and Bayesian networks. Statistics and Computing, 10:39–54, 2000.

[5] Yu M. Shtarkov. Universal sequential coding of single messages. Problems of Information Trans-
mission, 23:3–17, 1987.

[6] J. Rissanen. Fisher information and stochastic complexity. IEEE Transactions on Information
Theory, 42(1):40–47, January 1996.

[7] P. Kontkanen and P. Myllymäki. A linear-time algorithm for computing the multinomial stochas-
tic complexity. Submitted to Information Processing Letters, 2007.

[8] P. Kontkanen, P. Myllymäki, W. Buntine, J. Rissanen, and H. Tirri. An MDL framework for data
clustering. In P. Grünwald, I.J. Myung, and M. Pitt, editors, Advances in Minimum Description
Length: Theory and Applications. The MIT Press, 2006.

[9] A. Barron, J. Rissanen, and B. Yu. The minimum description principle in coding and modeling.
IEEE Transactions on Information Theory, 44(6):2743–2760, October 1998.

[10] Q. Xie and A.R. Barron. Asymptotic minimax regret for data compression, gambling, and pre-
diction. IEEE Transactions on Information Theory, 46(2):431–445, March 2000.

[11] J. Rissanen. Strong optimality of the normalized ML models as universal codes and information
in data. IEEE Transactions on Information Theory, 47(5):1712–1717, July 2001.

153

[12] P. Grünwald. Minimum description length tutorial. In P. Grünwald, I.J. Myung, and M. Pitt,
editors, Advances in Minimum Description Length: Theory and Applications, pages 23–79. The
MIT Press, 2006.

[13] J. Rissanen. Lectures on statistical modeling theory, August 2005. Available online at www.mdl-
research.org.

[14] P. Kontkanen and P. Myllymäki. MDL histogram density estimation. In Proceedings of the
Eleventh International Conference on Artificial Intelligence and Statistics (to appear), San Juan,
Puerto Rico, March 2007.

[15] M.E. Dyer, R. Kannan, and J. Mount. Sampling contingency tables. Random Structures and
Algorithms, 10(4):487–506, 1997.

154

Publication III

Hannes Wettig and Roman Yangarber

Probabilistic Models for Aligning Etymological Data

Pp. 246–253 in Proceedings of the 18th Nordic Conference of Compu-
tational Linguistics NODALIDA 2011
Editors: Bolette Sandford Pedersen, Gunta Nešpore and Inguna Skadiņa
NEALT Proceedings Series, Vol. 11 (2011), viii-ix

c© 2011 the authors.

155

156

Probabilistic Models for Alignment of Etymological Data

Hannes Wettig, Roman Yangarber
Department of Computer Science
University of Helsinki, Finland

First.Last@cs.helsinki.fi

Abstract
This paper introduces several models for
aligning etymological data, or for finding
the best alignment at the sound or sym-
bol level, given a set of etymological data.
This will provide us a means of measur-
ing the quality of the etymological data
sets in terms of their internal consistency.
Since one of our main goals is to devise
automatic methods for aligning the data
that are as objective as possible, the mod-
els make no a priori assumptions—e.g., no
preference for vowel-vowel or consonant-
consonant alignments. We present a base-
line model and successive improvements,
using data from Uralic language family.

1 Introduction

We present work on induction of alignment rules
for etymological data in a project that studies
genetic relationships among the Uralic language
family. Our interest is in methods that are as ob-
jective as possible, i.e., rely only on the data rather
than on prior assumptions or “universal” princi-
ples about the data, possible rules and alignments.
Another goal is to derive measures of quality of
data sets in terms of their internal consistency—
a data-set that is more consistent should receive
a higher score. We seek methods that analyze
the data automatically in an unsupervised fashion.
The question is whether a complete description of
the correspondences can be discovered automat-
ically, directly from raw etymological data—sets
of cognate words from languages within the lan-
guage family. Another way of looking at this is:
what alignment rules are “inherently encoded” in
a data-set (the corpus) itself. Thus, at present,
our aim is to analyze given etymological data-sets,
rather than to construct one from scratch.

Several approaches to etymological alignment
have emerged over the last decade, summarized in

section 2. In prior work, it was observed that ety-
mology induction may have potential applications,
among them aiding machine translation systems
for resource-poor languages. Our interest is some-
what more theoretical; we are at present less inter-
ested in applications than in building models that
are principled and avoid building ad-hoc heuristics
into the models from the outset.

We review related work in Section 2, present
a statement of the etymology alignment problem
in Section 3, our models in Section 3, results in
Section 5, and the next steps in Section 6.

1.1 Computational Etymology

Etymology involves several problems, including:
determination of genetic relations among groups
of languages, from raw linguistic data; discov-
ering regular sound correspondences across lan-
guages in a given language family; reconstruction
of proto-forms for a hypothetical parent language,
from which the word-forms found in the daughter
languages derive.

Computational etymology is interesting from
the point of view of computational linguistics
and machine learning. Computational methods
can provide valuable feedback to the etymolog-
ical/linguistic community. The methods can be
evaluated by whether they perform certain aspects
of etymological analysis correctly, that is, whether
automatic analysis—at least in some cases—is
able to produce results that match the theories es-
tablished by manual analysis.

Why is computational etymology useful—can
results obtained by automatic analysis clarify or
improve upon established theories?

First, even if computational methods yield no
new insights from the linguistic point of view, and
only validate previously established theories, that
would still be a useful result. Because computa-
tional approaches differ in nature from traditional
linguistic methods, a matching result would serve

Bolette Sandford Pedersen, Gunta Nešpore and Inguna Skadiņa (Eds.)
NODALIDA 2011 Conference Proceedings, pp. 246–253

as a non-trivial, independent confirmation of cor-
rectness of traditional methods.

Second, while some major language families
have been studied extensively from the etymo-
logical perspective, many have not. Language
families such as the Indo-European have received
more attention than others and have been stud-
ied in greater detail, mainly because more relevant
data has been collected and available to scholars
for a longer time. For the less-studied language
families, automatic analysis will allow linguists to
bootstrap results quickly, to provide a foundation
for further, more detailed investigation.

Third, the significant matter of uncertainty:
Most etymological resources—dictionaries and
handbooks—label certain relationships as “dubi-
ous,” to a varying degree, usually due to violation
of some expected regularity. Different (re)sources
contain different decisions, which result in con-
flicts, because they are based on different theories.
There is currently no way to objectively assess the
relative likelihood of competing theories. Uncer-
tainty is typically not quantified in a disciplined
way, making it difficult for the linguist to know
just how un/likely a particular relationship may be.

When etymology is approached by computa-
tional means, decisions are made within a rigor-
ous framework, which makes it possible to state in
probabilistic terms how likely any decision is to be
correct given the data, and the relative likelihood
of competing hypotheses.

Finally, a serious problem in manual etymolog-
ical analysis is the potential bias of the human in-
vestigator. Bias may arise for many reasons; for
example, at the time when a certain relationship is
accepted as valid, some relevant data may be un-
known or unavailable to the researcher, or may be
available but ignored. Automatic analysis has the
advantage of using all available data, without bias.

2 Related Work

We use two digital Uralic etymological resources,
SSA—Suomen Sanojen Alkuperä (“The Origin of
Finnish Words”), (Itkonen and Kulonen, 2000),
and StarLing, (Starostin, 2005). StarLing was
originally based on (Rédei, 1988 1991), and dif-
fers in several respects from SSA. StarLing has un-
der 2000 Uralic cognate sets, compared with over
5000 in SSA, and does not explicitly indicate du-
bious etymologies. However, Uralic data in Star-
Ling is more evenly distributed, because it is not

Finnish-centric like SSA is—cognate sets in Star-
Ling are not required to contain a member from
Finnish. StarLing also gives a reconstructed form
for each cogset, which may be useful for testing
algorithms that perform reconstruction.

We are experimenting with the Uralic data by
implementing algorithms modeling various ety-
mological processes. A method due to Kon-
drak, (Kondrak, 2002) learns one-to-one regular
sound correspondences between pairs of related
languages in the data. The method in (Kondrak,
2003) finds attested complex (one-to-many) corre-
spondences. These models are somewhat simplis-
tic in that they operate only on one language pair at
a time, and do not model the contexts of the sound
changes, while we know that most etymological
changes are conditioned on context. Our imple-
mentation of (Bouchard-Côté et al., 2007) found
correspondence rules with correct contexts, using
more than two languages. However, we found that
this model’s running time did not scale if the num-
ber of languages is above three.

In validating our experiments we use rules
found in, e.g., (Lytkin, 1973; Sinor, 1997).

The Uralic language family has not been studied
by computational means previously.

3 Aligning Pairs of Words

We start with pairwise alignment: aligning two
languages means aligning a list of pairs of words
in the two languages, which our data set claims are
related. The task is alignment, i.e., for each pair of
words, finding which symbols correspond to each
other. We expect that some symbols will align
with themselves, while others have gone through
changes over the time that the two related lan-
guages have been evolving separately. The sim-
plest form of such alignment at the symbol level is
a pair (s, t) ∈ Σ × T , a single symbol s from the
source alphabet Σ with a symbol t from the target
alphabet T . We denote the sizes of the alphabets
by |Σ| and |T |, respectively.

Clearly, this type of atomic alignment alone
does not enable us to align a source word s of
length |s| with a target word t of length |t| 6= |s|.1
We also need to allow insertions and deletions.
We augment both alphabets with the empty sym-
bol, denoted by a dot, and write Σ. and T. to re-
fer to the augmented alphabets. We can now align
word pairs such as kaikki—kõik (meaning “all” in

1We use boldface to denote words, as vectors of symbols.

247

Probabilistic Models for Alignment of Etymological Data

247

Finnish and Estonian), for example, as either of:

k a i k k i k a . i k k i
| | | | | | | | | | | | |
k õ i k . . k . õ i k . .

The alignment on the right consists of the pairs of
symbols: (k:k), (a:.), (.:õ), (i:i), (k:k), (k:.), (i:.).

Note that we speak of “source” and “target” lan-
guage for convenience only—our models are com-
pletely symmetric, as will become apparent.

3.1 The Baseline Model
We wish to encode these aligned pairs as
compactly as possible, following the Mini-
mum Description Length Principle (MDL), see
e.g. (Grünwald, 2007). Given a data corpus D =
(s1, t1), . . . , (sN , tN) of N word pairs, we first
choose an alignment of each word pair (si, ti),
which we then use to “transmit” the data, by sim-
ply listing the sequence of the atomic pairwise
symbol alignments.2 In order for the code to be
uniquely decodable, we also need to encode the
word boundaries. This can be done by transmit-
ting a special symbol # that we do not use in any
other context, only at the end of a word.

Thus, we transmit objects, or events e, from the
event space E, in this case:

E = Σ. × T. ∪
{

(# : #)
}

We do this by means of Bayesian Marginal Likeli-
hood (Kontkanen et al., 1996), or prequential cod-
ing, giving the total code length as:

Lbase(D) =−
∑

e∈E
log Γ

(
c(e) + α(e)

)

+
∑

e∈E
log Γ

(
α(e)

)

+ log Γ

[∑

e∈E

(
c(e) + α(e)

)
]

− log Γ

[∑

e∈E
α(e)

]
(1)

The count c(e) is the number of times event e oc-
curs in a complete alignment of the corpus; in par-
ticular, c(# : #) = N occurs as many times as
there are word pairs. The alignment counts are
maintained in a corpus-global alignment matrix

2By atomic we mean that the symbols are not analyzed—
in terms of their phonetic features—and treated by the base-
line algorithm as atoms. In particular,

M , where M(i, j) = c(i : j). The α(e) are the
(Dirichlet) priors on the events. In the baseline al-
gorithm, we set α(e) = 1 for all e, the so-called
uniform prior, which does not favour any distribu-
tion over E, a priori. Note that this choice nulls
the second line of equation 1.

Our baseline algorithm is simple: we first ran-
domly align the entire corpus, then re-align one
word pair at a time, greedily minimizing the total
cost in Eq. 1, using dynamic programming.

In the Viterbi-like matrix below in Figure 1,
each cell corresponds to a partial alignment:
reaching cell (i, j) means having read off i sym-
bols of the source and j symbols of the target
word. We iterate this process, re-aligning the
word pairs; i.e., for a given word pair, we sub-
tract the contribution of its current alignment from
the global count matrix, then re-align the word
pair, then add the newly aligned events back to the
global count matrix. Re-alignment continues until
convergence.

Re-alignment Step: align a source word σ con-
sisting of symbols σ = [σ1...σn] ∈ Σ∗ with a tar-
get word τ = [τ1...τm]. We fill in the matrix via
dynamic programming, e.g., top-to-bottom, left-
to-right:3

Figure 1: Dynamic programming matrix to search
for most probable alignment.

Any alignment of σ and τ must correspond in a
1-1 fashion to some path through the matrix start-
ing from top-left cell and terminating in bottom-
right cell, moving only downward or rightward.

Each cell stores the probability of the most
probable path to that point: the most probable way
to have scanned the source word σ up to symbol σi
and the target word up to τj , markedX in Figure 1.

3NB: Figure 1 uses an extra column on the left and an
extra row at the top, to store the costs for deleting symbols
from the source at the beginning of the word, and from the
target, respectively.

248

Hannes Wettig and Roman Yangarber

248

V (σi, τj) = min

V (σi, τj−1) +L(. : τj)

V (σi−1, τj) +L(σi : .)

V (σi−1, τj−1) +L(σi : τj)

(2)

In each case, the term V (.) has been computed ear-
lier by the dynamic programming; the term L(.)—
the cost of aligning the two symbols—is a param-
eter of the model, computed in equation (3).

The parameters L(e) or P (e), for every ob-
served event e, are computed from the change
in the total code-length—the change that corre-
sponds to the cost of adjoining the new event e
to the set of previously observed events E:

L(e) = ∆eL = L
(
E ∪ {e}

)
− L(E)

P (e) = 2−∆eL =
2−L

(
E∪{e}

)

2−L(E)
(3)

Combining eqs. 1 and 3 gives the probability:

P (e) =
c(e) + 1∑

e′
c(e′) + |E|

(4)

In particular, the cost of the most probable com-
plete alignment of the two words will be stored in
the bottom-right cell, V (σn, τm), marked �.

3.2 The Two-Part Code
The baseline algorithm has revealed two problems.
First, the algorithm seems to get stuck in local op-
tima, and second, it produces many events with
very low counts (occurring only once or twice).

To address the first problem we use simulated
annealing with a sufficiently slow cooling sched-
ule. This yields a reduction in the cost, and a
better—more sparse—alignment count matrix.

The second problem is more substantial. Events
that occur only once clearly have not got much
support in the data. In theory, starting out from
a common ancestor language, the number of
changes that occurred in either language should be
small. This does not necessarily mean many self-
alignments of a symbol with itself, since a change
may apply to many occurrences, e.g., all occur-
rences of the sound h at the end of a word have
disappeared in Finnish. However, we still expect
sparse data: we expect a relatively small portion
of all possible events in E+ to actually ever occur.

We incorporate this notion into our model by
means of a two-part code. We first encode which
events have occurred/have been observed: we first
send the number of non-zero-count events—this
costs log(|E| + 1) bits—and then transmit which
subset E+ of the events have non-zero counts—
this costs log

(|E|
|E+|

)
bits. This first part of the

code is called the codebook. Given the codebook,
we transmit the complete data using Bayesian
marginal likelihood. The code length becomes:

Ltpc(D) = log(|E|+ 1) + log

(|E|
|E+|

)

−
∑

e∈E+

log Γ
(
c(e) + 1

)
(5)

+ log Γ

∑

e∈E+

(
c(e) + 1

)

− log Γ(|E+|)

where E+ denotes the set of events with non-zero
counts, and we have set all α(e)’s to one. Optimiz-
ing the above function with Simulated Annealing
yields very good quality alignments.

3.3 Aligning Multiple Symbols
Multiple symbols are aligned in (Bouchard-Côté
et al., 2007; Kondrak, 2003). In Estonian and
Finnish appear frequent geminated consonants,
which correspond to single symbols/sounds in
other languages; diphthongs may align with sin-
gle vowels. We allow correspondences of at most
two symbols on both the source and the target side.
Thus, the set of admissible kinds of events is:

K =

(# : #), (σ : .), (σσ′ : .),
(. : τ), (σ : τ), (σσ′ : t),
(. : ττ ′), (σ : ττ ′), (σσ′ : ττ ′)

(6)

We do not expect correspondences of the differ-
ent types to behave similarly, so we encode the oc-
currences of all event kinds separately in the code-
book part of the two-part code:
Lmult(D) = L(CB) + L(D|CB) (7)

L(CB) =
∑

k∈K

[
log(Nk + 1) + log

(
Nk

Mk

)]

(8)

L(D|CB) = −
∑

e∈E
log Γ

(
c(e) + 1

)
(9)

+ log Γ

[∑

e∈E

(
c(e) + 1

)
]
− log Γ(|E|)

249

Probabilistic Models for Alignment of Etymological Data

249

where Nk is the number of possible events of
kind k and Mk the corresponding number of such
events actually present in the alignment; by defini-
tion

∑
kMk ≡ |E|.

Then, the parameters P (e), for every observed
event e, are again computed from the change in the
code-length, eq. 3. But e may be of a kind that has
been already observed previously, or it maybe of a
new kind. Eq. 4 gives the formula for probability
when c(e) > 0—that is, if e ∈ E—whereas

P (e) =
1∑

e′
c(e′) + |E|

·

· |E|∑

e′
c(e′) + |E|+ 1

· Mk + 1

Nk −Mk

(10)

when e /∈ E, and e is of kind k. If the event e
has been already observed, the value of P (e) is
computed by plugging equation (9) into eq. (3)—
yielding eq. (4); if this is the first time e is ob-
served, P (e) is computed by plugging both eq. (9)
and eq. (8) into eq. (3), since then the codebook
also changes—yielding eq. (10).

Again we optimize this cost function by means
of Simulated Annealing.

4 3-Dimensional Alignment

The baseline models section we restricted our-
selves to aligning two languages. The alignment
models allow us to learn 1-1 patterns of correspon-
dence in the language family. The model is eas-
ily extensible to any number of languages. Other
methods for aligning more than two languages
were presented in (Bouchard-Côté et al., 2007).

We extend the 2-D model to three-dimensions
as follows. We seek an alignment where symbols
correspond to each other in a 1-1 fashion, as in
the 2-D baseline. A three-dimensional alignment
is a triplet of symbols (σ : τ : ξ) ∈ Σ×T×Ξ.
For example, (yhdeksän : üheksa : veχksa)—
meaning “9” in Finnish, Estonian and Mordva, can
be aligned simultaneously as:

y . h d e k s ä n
| | | | | | | | |
ü . h . e k s a .
| | | | | | | | |
v e χ . . k s a .

In 3-D alignment, the input data contains all ex-
amples where words in at least two languages

are present4—i.e., a word may be missing from
one of the languages, (which allows us to uti-
lize more of the data). Thus we have two types
of examples: complete examples, those that have
all three words present (as “9” above), and in-
complete examples—containing words in only
two languages. For example, the alignment of
(haamu:—:čama)—meaning “ghost” in Finnish
and Mordva—is an example where the cognate Es-
tonian word is missing.

We must extend the 2-D alignment matrix and
the 2-D Viterbi matrices to 3-D. The 3-D Viterbi
matrix is directly analogous to the 2-D version.
For the alignment counts in 3-D, we handle com-
plete and incomplete examples separately.

4.1 Marginal 3-D Model
The “marginal” or “pairwise” 3-D alignment
model aligns three languages simultaneously, us-
ing only the marginal 2-D matrices, each storing
pairwise 2-D alignments. The marginal matrices
for three languages are denoted MΣT , MΣΞ and
MTΞ. The algorithm optimizes the total cost of the
complete data, which is defined as the sum of the
three 2-D costs obtained from applying prequen-
tial coding to the marginal alignment matrices.

When computing the cost for event e =
(σ, τ, ξ), we consider complete and incomplete ex-
amples separately. In “incomplete” examples, we
use the counts from the corresponding marginal
matrix directly. E.g., for event count c(e), where
e = (σ,−, ξ), and − denotes the missing lan-
guage, the event count is given by: MΣΞ(σ, ξ),
and the cost of each alignment is computed as in
the baseline model, directly in 2 dimensions.

In case when the data triplet is complete—fully
observed—the alignment cost is computed as the
sum of the pairwise 2-D costs, given by three
marginal alignment count matrices:

L(σ : τ : ξ) = LΣT (σ : τ)

+ LΣΞ(σ : ξ)

+ LTΞ(τ : ξ) (11)

The cost of each pairwise alignment is computed
using prequential two-part coding, as in sec. 3.2.

Note that when we register a complete align-
ment (σ, τ, ξ), we register it in each of the base

4In the baseline 2-D algorithm, this requirement was also
satisfied trivially, because in 2-D each example contains a
word from both the source and the target language.

250

Hannes Wettig and Roman Yangarber

250

.
a
d
e
h
i
j
k
l
m
n
o
p
r
s
t
u
v
y
ä
ö

. a b D d e g h i j k l m n o õ p r s t u v ä ö ü

F
in
ni
sh

Estonian

Figure 2: Alignment count matrix for Estonian-
Finnish, using the two-part code.

matrices—we increment each of the marginal
counts: MΣT (σ, τ), MΣΞ(σ, ξ), and MTΞ(τ, ξ).
To deregister, we decrement all three counts.

To calculate the transition costs in the Viterbi
algorithm, we also have two cases, complete and
incomplete. For incomplete examples, we perform
Viterbi in 2-D, using the costs directly from the
corresponding marginal matrix, equation (5).

Note that in 3-D a non-empty symbol in one lan-
guage may align to the deletion symbol “.” in two
languages, e.g., (.:.:d) in the 3-D example above.
This means that the alignment (.:.) can now have
non-zero count and marginal probability, as any
other 1-1 alignment.5

Re-alignment: the re-alignment phase for the
complete examples in 3-D is analogous to the
re-alignment in 2-D, equation (2). The cell in
the re-alignment matrix V (σi, τj , ξk)—the cumu-
lative cost of the cheapest path leading to the cell
(i, j, k)—is calculated via dynamic programming,
from the symbol-alignment costs L(σ : τ : ξ):

V (σi, τj , ξk) =

min

V (σi−1, τj , ξk) +L(σi : . : .)

V (σi, τj−1, ξk) +L(. : τj : .)

V (σi, τj , ξk−1) +L(. : . : ξk)

V (σi−1, τj−1, ξk) +L(σi : τj : .)

V (σi, τj−1, ξk−1) +L(. : τj : ξk)

V (σi−1, τj , ξk−1) +L(σi : . : ξk)

V (σi−1, τj−1, ξk−1) +L(σi : τj : ξk)

5NB: this count is always zero in 2-D alignments, and re-
mains impossible when aligning incomplete examples in 3-D.

.
a
d
e
h
i
j
k
l

m
n
o
p
r
s
t
u
v
y
ä
ö

. a b c d d́ e f g i j k l ĺ m n o p r ŕ s t t́ u v v́ z ä ć č ń ŋ ŕ ś š ź ž

F
in

ni
sh

Mordva

Figure 3: Mordva-Finnish 2-part code alignment.

5 Results

Evaluation of the results of the alignment algo-
rithms is not a simple matter. One way to evaluate
thoroughly would require a gold-standard aligned
corpus; the algorithms produce alignments, which
should be compared to the alignments that we
would expect to find. We currently have lin-
guists working on a gold-standard alignment for
the Uralic data. Given a gold-standard alignment,
we can measure performance quantitatively, e.g.,
in terms of accuracy.

Alignment: We can still perform qualitative
evaluation, by checking how many correct sound
correspondences the algorithm finds, by inspect-
ing the final alignment of the corpus and the align-
ment matrix. Sample matrices for 2-D alignments
of Finnish-Estonian and Finnish-Mordva (Erzä di-

Fi-Ug

Ob’

Volga

Baltic

Hungarian

Hanty

Mansi

Finnish

Komi

Udmurt

Estonian

Saami

Mari

Mordva

Perm’

Figure 4: The Finno-Ugric sub-family of Uralic.

251

Probabilistic Models for Alignment of Etymological Data

251

est fin khn kom man mar mrd saa udm ugr
est .372 .702 .704 .716 .703 .665 .588 .733 .778
fin .372 .731 .695 .754 .695 .635 .589 .699 .777
khn .702 .719 .672 .633 .701 .718 .668 .712 .761
kom .698 .703 .659 .675 .656 .678 .700 .417 .704
man .702 .711 .633 .649 .676 .718 .779 .688 .752
mar .715 .694 .731 .671 .746 .648 .671 .674 .738
mrd .664 .624 .658 .678 .713 .648 .646 .709 .722
saa .643 .589 .733 .706 .733 .621 .660 .686 .760
udm .684 .712 .697 .417 .644 .694 .623 .677 .759
ugr .780 .778 .761 .714 .755 .721 .743 .766 .741

Table 1: Pairwise normalized compression costs for Finno-Ugric sub-family of Uralic, in StarLing data.

alect) are in figures 2 and 3. The size of each ball
in the grid is proportional to the number of align-
ments in the corpus of the corresponding symbols.

Finnish and Estonian are the nearest languages
in StarLing, and we observe that the alignment
shows a close correspondence—the algorithm
finds the diagonal, i.e., most sounds correspond
to “themselves”. It must be noted that the algo-
rithm has no a priori knowledge about the nature
of the symbols, e.g., that Finnish a has any rela-
tion to Estonian a. The languages could be written,
e.g., with different alphabets—as they are in gen-
eral (we use transcribed data). This is evident in
the Finnish-Estonian correspondence y∼ü, which
is the same sound written using different symbols.
The fact that the model finds a large number of
“self” correspondences is due to the algorithm.

The model finds many Finnish-Estonian
correspondences—according to rules we find in
handbooks, e.g., (Lytkin, 1973; Sinor, 1997). For
example, ä∼a or ä∼ä about evenly: this reflects
the rule that original front vowels (as ä) become
back in non-first syllables in Estonian. Plosives
t, k become voiced d, g in certain contexts in
non-initial positions. Word-final vowels a, i, ä are
often deleted. These can be observed directly in
the alignment matrix, and in the aligned corpus.

In the Finnish-Mordva alignment, the diagonal
is not as pronounced, since the languages are fur-
ther apart and sound correspondences more com-
plex. Many more sounds are deleted, there is
more entropy than in Finnish-Estonian; for exam-
ple, many Finnish vowels map correctly to Erzä
e, especially the front and high vowels; the back
vowels do so much less often. Finnish h is mapped
correctly to č or š. There is a (correct) preference
to align o to u, and vice versa.

Compression: We can evaluate the quality of
the alignment indirectly, through distances be-
tween languages. We align all languages in Star-
Ling pairwise, using the two-part code model. We
can then measure the Normalized Compression
Distance (Cilibrasi and Vitanyi, 2005):

δ(a,b) =
C(a,b)−min(C(a,a), C(b,b))

max(C(a,a), C(b,b))

where 0 < δ < 1, and C(a,b) is the compression
cost—i.e., the cost of the complete aligned data
for languages A and B.6 The pairwise compres-
sion distances are shown in Table 1. Even with
the simple 1x1 baseline model we see emerging
patterns that mirror relationships within the Uralic
family tree, shown in Fig. 4, e.g., one adapted
from (Anttila, 1989). For example, scanning the
row corresponding to Finnish, the compression
distances grow as: Estonian .372, Saami .589,
Mordva .635, Mari .695, Komi .695, Udmurt .699,
Hanty .731, Mansi .754, and Hungarian .777, as
the corresponding distance within the family tree
also grows. The same holds true for Estonian.

In bold figures are sister languages, identified
as being closest within their rows, (top to bottom):
the Baltic, Ob’, Permic, and Volgaic sub-branches.

Although the distances are not perfect (for some
languages, the estimates are not 100% accurate)
this confirms that the model is able to compress
better—i.e., find more regularity—between lan-
guages that are are more closely related.

6C(a,a) is a monolingual “alignment” of a language with
itself—which is very primitive, since the 1x1 model is then
able to model only the symbol frequencies.

252

Hannes Wettig and Roman Yangarber

252

6 Current Work and Conclusions

We have presented several models of increasing
complexity for alignment of etymological data-
sets. The baseline 1x1 model is improved upon
by introducing a two-part coding scheme and sim-
ulated annealing—this helps reduce the cost and
improves the alignment. Introducing 2x2 align-
ment helps to reduce the cost further, but produces
many spurious symbol pairs, because certain com-
binations of sounds appear frequently within a sin-
gle language. We conclude that the proper way
to handle this is by modeling context explicitly,
as described above. The powerful extension of
the baseline to multiple languages performs well
in terms of costs and resulting alignments—these
will be tested against a gold-standard in future
work. An interesting consequence of the MDL-
based alignment procedure, is the ability to use the
alignment costs as a measure of language relation,
as shown in Table 1.7

Although the simulated annealing heuristic al-
ready yields useful results, the algorithm still tends
to end up in different final alignment states—even
with a slow cooling schedule—which differ in
quality in terms of the cost function, eq. 7.

We are currently extending the alignment model
in two ways: by modeling context—assigning dif-
ferent probabilities to the same event in different
environments, and by using the phonetic feature
representation of the alphabet symbols.

The presented methods are not intended to re-
place traditional methods for etymological analy-
sis. We are addressing only a narrow slice of the
problem of etymological analysis. However, we
believe these models provide an initial basis for
building more interesting and complex models in
the future. In particular, we can use them to ap-
proach the question of comparison of “competing”
etymological data-sets or theories. The cost of an
optimal alignment obtained over a given data set
gives an indication of the internal regularity within
the set, which can be used as an indication of con-
sistency and quality.

We have not begun to address many important
questions in etymology, including borrowing and
semantics, etc. We initially focus on phonological
phenomena only. Earlier work, (Kondrak, 2004)
has shown that even semantics can begin to be
approached in a rigorous way by computational

7To save space, we focus on the Finno-Ugric sub-family
of Uralic, and leave out the Samoyedic branch.

means. Borrowing will require building models
that can span across language families, which will
require more mature models in the future.

Acknowledgements

Research supported by the Uralink Project of the
Academy of Finland, Grant 129185. We thank
Arto Vihavainen and Suvi Hiltunen for their con-
tribution to the implementation and testing of the
algorithms. We are grateful to the anonymous re-
viewers for their comments and suggestions.

References
R. Anttila. 1989. Historical and comparative linguis-

tics. John Benjamins.

A. Bouchard-Côté, P. Liang, T.Griffiths, and D. Klein.
2007. A probabilistic approach to diachronic
phonology. In Proc. EMNLP-CoNLL, Prague.

R. Cilibrasi and P.M.B. Vitanyi. 2005. Clustering
by compression. IEEE Transactions on Information
Theory, 51(4).

P. Grünwald. 2007. The Minimum Description Length
Principle. MIT Press.

E. Itkonen and U.-M. Kulonen. 2000. Suomen Sano-
jen Alkuperä (The Origin of Finnish Words). Suo-
malaisen Kirjallisuuden Seura, Helsinki, Finland.

G. Kondrak. 2002. Determining recurrent sound corre-
spondences by inducing translation models. In Pro-
ceedings of COLING 2002, Taipei.

G. Kondrak. 2003. Identifying complex sound cor-
respondences in bilingual wordlists. In A. Gelbukh
(Ed.) CICLing, Mexico. Springer LNCS, No. 2588.

G. Kondrak. 2004. Combining evidence in cognate
identification. In Proceedings of Canadian-AI 2004,
London, ON. Springer-Verlag LNCS, No. 3060.

P. Kontkanen, P. Myllymäki, and H. Tirri. 1996. Con-
structing Bayesian finite mixture models by the EM
algorithm. Technical Report NC-TR-97-003, ES-
PRIT Working Group on NeuroCOLT.

V. I. Lytkin. 1973. Voprosy Finno-Ugorskogo Jazykoz-
nanija (Issues in Finno-Ugric Linguistics), volume
1–3. Nauka, Moscow.

K. Rédei. 1988–1991. Uralisches etymologisches
Wörterbuch. Harrassowitz, Wiesbaden.

Denis Sinor, editor. 1997. The Uralic Languages:
Description, History and Foreign Influences (Hand-
book of Uralic Studies). Brill Academic Publishers.

S. A. Starostin. 2005. Tower of babel: Etymological
databases. http://newstar.rinet.ru/.

253

Probabilistic Models for Alignment of Etymological Data

ISSN 1736-6305 Vol. 11
http://hdl.handle.net/10062/16955

Publication IV

Hannes Wettig, Suvi Hiltunen and Roman Yangarber

MDL-based Models for Aligning Etymological Data

Proceedings of the Conference on Recent Advances in Natural Language
Processing (RANLP-2011)
Hissar, Bulgaria

c© 2011 Association for Computational Linguistics.
Reprinted with permission.

165

166

Proceedings of Recent Advances in Natural Language Processing, pages 111–117,
Hissar, Bulgaria, 12-14 September 2011.

MDL-based Models for Alignment of Etymological Data

Hannes Wettig, Suvi Hiltunen, Roman Yangarber
Department of Computer Science
University of Helsinki, Finland

First.Last@cs.helsinki.fi

Abstract

We introduce several models for alignment of
etymological data, that is, for finding the best
alignment, given a set of etymological data, at
the sound or symbol level. This is intended
to obtain a means of measuring the quality of
the etymological data sets, in terms of their in-
ternal consistency. One of our main goals is to
devise automatic methods for aligning the data
that are as objective as possible, the models
make no a priori assumptions—e.g., no prefer-
ence for vowel-vowel or consonant-consonant
alignments. We present a baseline model and
several successive improvements, using data
from the Uralic language family.

1 Introduction
We present work on induction of alignment rules for
etymological data, in a project that studies genetic re-
lationships among the Uralic language family. This is
a continuation of previous work, reported in (Wettig
and Yangarber, 2011), where the methods were intro-
duced. In this paper, we extend the models reported
earlier and give a more comprehensive evaluation of
results. In addition to the attempt to induce alignment
rules, we aim to derive measures of quality of data sets
in terms of their internal consistency. More consis-
tent dataset should receive a higher score in the evalu-
ations. Currently our goal is to analyze given, existing
etymological datasets, rather than to construct cognate
sets from raw linguistic data. The question to be an-
swered is whether a complete description of the corre-
spondence rules can be discovered automatically. Can
they be found directly from raw etymological data—
sets of cognate words from languages within the lan-
guage family? Are the alignment rules are “inherently
encoded” in a dataset (the corpus) itself? We aim to
develop methods that are as objective as possible, that
rely only on the data, rather than on any prior assump-
tions about the data, the possible rules and alignments.

Computational etymology encompasses several
problem areas, including: discovery of sets of genet-

ically related words—cognates; determination of ge-
netic relations among groups of languages, from raw
or organized linguistic data; discovering regular sound
correspondences across languages in a given language
family; and reconstruction, either diachronic—i.e., re-
construction of proto-forms for a hypothetical par-
ent language, from which the word-forms found in
the daughter languages derive, or synchronic—i.e., of
word forms that are missing from existing languages.

Several approaches to etymological alignment have
emerged over the last decade. The problem of discov-
ering cognates is addressed, e.g., in, e.g., (Bouchard-
Côté et al., 2007; Kondrak, 2004; Kessler, 2001). In
our work, we do not attempt to find cognate sets, but
begin with given sets of etymological data for a lan-
guage family, possibly different or even conflicting.
We use the principle of recurrent sound correspon-
dence, as in much of the literature, including the men-
tioned work, (Kondrak, 2002; Kondrak, 2003) and oth-
ers. Modeling relationships within the language fam-
ily arises in the process of evaluation of our alignment
models. Phylogenetic reconstruction is studied exten-
sively by, e.g.,(Nakhleh et al., 2005; Ringe et al., 2002;
Barbancon et al., 2009); these work differ from ours in
that they operate on pre-compiled sets of “characters”,
capturing divergent features of entire languages within
the family, whereas we operate at the level of words or
cognate sets. Other related work is further mentioned
in the body of the paper.

We describe our datasets in the next section, present
a statement of the etymology alignment problem in
Section 3, cover our models in detail in Sections 4– 6,
and discuss results and next steps in Section 7.

2 Data

We use two digital Uralic etymological resources,
SSA—Suomen Sanojen Alkuperä, “The Origin of
Finnish Words”, (Itkonen and Kulonen, 2000), and the
StarLing database, (Starostin, 2005). StarLing, origi-
nally based on (Rédei, 1988 1991), differs from SSA in
several respects. StarLing has about 2000 Uralic cog-
nate sets, compared with over 5000 in SSA, and does

111

not explicitly indicate dubious etymologies. However,
Uralic data in StarLing is more evenly distributed, be-
cause it is not Finnish-centric like SSA is—cognate sets
in StarLing are not required to contain a member from
Finnish. The Uralic language family has not been
studied by computational means previously.

3 Aligning Pairs of Words

We begin with pairwise alignment: aligning a set of
pairs of words from two related languages in our data
set. The task of alignment means, for each word pair,
finding which symbols correspond. We expect that
some symbols will align with themselves, while others
have undergone changes over the time when the two
related languages have been evolving separately. The
simplest form of such alignment at the symbol level is
a pair (σ : τ) ∈ Σ × T , a single symbol σ from the
source alphabet Σ with a symbol τ from the target al-
phabet T . We denote the sizes of the alphabets by |Σ|
and |T |, respectively.1

Clearly, with this type of 1x1 alignment alone we
cannot align a source word σ of length |σ| with a tar-
get word τ of length |τ | 6= |σ|.2 To model also inser-
tions and deletions, we augment both alphabets with
the empty symbol, denoted by a dot, and use Σ. and
T. as augmented alphabets. We can then align word
pairs such as ien—ige, meaning “gum” in Finnish and
Established, for example, as:

i e n i . e n
| | | | | | |
i g e i g e .

etc. The (historically correct) alignment on the right
consists, e.g., of symbol pairs: (i:i), (.:g), (e:e), (n:.).

4 The Baseline Model

We wish to encode these aligned pairs as com-
pactly as possible, following the Minimum Descrip-
tion Length Principle (MDL), see e.g. (Grünwald,
2007; Rissanen, 1978). Given a data corpus D =
(σ1, τ 1), . . . , (σN , τN) of N word pairs, we first
choose an alignment of each word pair (σi, τ i), which
we then use to “transmit” the data, by simply listing the
sequence of the atomic pairwise symbol alignments.3

In order for the code to be uniquely decodable, we also
need to encode the word boundaries. This can be done
by transmitting a special symbol # that we use only at
the end of a word.

1We refer to “source” and “target” language for conve-
nience only—our models are symmetric, as will become ap-
parent.

2We use boldface to denote words, as vectors of symbols.
3By atomic we mean that the symbols are not analyzed—

in terms of their phonetic features—and treated by the base-
line algorithm as atoms. In particular, the model has no no-
tion of identity of symbols across the languages!

Thus, we transmit objects, or events, e, in the event
space E—which is in this case:

E = Σ. × T. ∪
{

(# : #)
}

We do this by means of Bayesian marginal likeli-
hood, or prequential coding, see e.g., (Kontkanen et al.,
1996), giving the total code length as:

Lbase(D) = (1)

−
∑
e∈E

log Γ
(
c(e) + α(e)

)
+
∑
e∈E

log Γ
(
α(e)

)
+ log Γ

[∑
e∈E

(
c(e) + α(e)

)]
− log Γ

[∑
e∈E

α(e)

]

The count c(e) is the number of times event e occurs
in a complete alignment of the corpus; in particular,
c(# : #) = N occurs as many times as there are word
pairs. The alignment counts are maintained in a corpus-
global count matrix M , where M(i, j) = c(i : j).
The α(e) are the (Dirichlet) priors on the events. In
the baseline algorithm, we set α(e) = 1 for all e, the
so-called uniform prior, which does not favor any dis-
tribution over E, a priori. Note that this choice nulls
the second summation in equation 1.

Our baseline algorithm is simple: we first randomly
align the entire corpus, then re-align one word pair at a
time, greedily minimizing the total cost in Eq. 1, using
dynamic programming.

In the matrix in Fig. 1, each cell corresponds to a par-
tial alignment: reaching cell (i, j) means having read
off i symbols of the source and j symbols of the tar-
get word. We iterate this process, re-aligning the word
pairs, i.e., for the given word pair, we subtract the con-
tribution of its current alignment from the global count
matrix, then re-align the word pair, then add the newly
aligned events back to the global count matrix. Re-
alignment continues until convergence.

Re-alignment Step: align source word σ consisting
of symbols σ = [σ1...σn] ∈ Σ∗ with target word τ =
[τ1...τm]. We use dynamic programming to fill in the
matrix, e.g., top-to-bottom, left-to-right:4

Alignments of σ and τ correspond in a 1-1 fashion
to paths through the matrix, starting with cost equal to
0 in top-left cell and terminating in bottom-right cell,
moving only downward or rightward.

Each cell stores the cost of the most probable path
so far: the most probable way to have scanned σ up to
symbol σi and τ up to τj , marked X in the Figure:

V (σi, τj) = min

V (σi, τj−1) +L(. : τj)

V (σi−1, τj) +L(σi : .)

V (σi−1, τj−1) +L(σi : τj)

(2)

Each term V (., .) has been computed earlier by the dy-
namic programming; the term L(.)—the cost of align-

4NB: in Fig. 1, the left column and the top row store the
costs for symbol deletions at the beginning of the source and
the target word, respectively.

112

Figure 1: Re-alignment matrix: computes Dynamic
Programming search for the most probable alignment.

ing the two symbols—is a parameter of the model,
computed in equation (3).

The parameters L(e), or P (e), for every observed
event e, are computed from the change in the total
code-length—the change that corresponds to the cost
of adjoining the new event e to the set of previously
observed events E:

L(e) = ∆eL = L
(
E ∪ {e}

)
− L(E)

P (e) = 2−∆eL =
2−L

(
E∪{e}

)
2−L(E)

(3)

Combining eqs. 1 and 3 gives the probability:

P (e) =
c(e) + 1∑

e′

c(e′) + |E|
(4)

In particular, the cost of the most probable complete
alignment of the two words will be stored in the
bottom-right cell, V (σn, τm), marked �. An example
alignment count matrix is shown in Fig. 2.

4.1 The Two-Part Code
The baseline model revealed two problems. First, it
seems to get stuck in local optima, and second, it pro-
duces many events with very low counts (occurring
only once or twice).

To address the first problem we use simulated an-
nealing with a sufficiently slow cooling schedule. This
yields a reduction in the cost, and a better—more
sparse—alignment count matrix.

The second problem is more substantial. Start-
ing from a common ancestor language, the number
of changes that occurred in either language should be
small. We expect sparse data—that only a small pro-
portion of all possible events in E will actually ever
occur.

We incorporate this notion into the model by means
of a two-part code. First we encode which events have
occurred/have been observed: we send a. the number
of events with non-zero counts—this costs log(|E|+1)
bits, and b. specifically which subset E+ ⊂ E of the

Figure 2: Global count matrix, using two-part model

events have non-zero counts—this costs log
(|E|
|E+|

)
bits.

This first part of the code is called the codebook. Given
the codebook, we transmit the complete data, E+, us-
ing Bayesian marginal likelihood. The code length be-
comes:

Ltpc(D) = log(|E|+ 1) + log

(
|E|
|E+|

)
(5)

−
∑

e∈E+

log Γ
(
c(e) + 1

)
+ log Γ

(∑
e∈E+

(
c(e) + 1

))
− log Γ(|E+|)

where E+ denotes the set of events with non-zero
counts, and we have set all α(e)’s to one. Optimiz-
ing the above function with simulated annealing yields
much better alignments.

4.2 Aligning Multiple Symbols
Multiple symbols are aligned in (Bouchard-Côté et al.,
2007; Kondrak, 2003). For example, Estonian and
Finnish have frequent geminated consonants, which
correspond to single symbols/sounds in other lan-
guages; diphthongs may align with single vowels; etc.
We extend the baseline model to a 2x2 model, to al-
low correspondences of up to two symbols on both the
source and the target side. The set of admissible kinds
of events is then extended to include:

K =

 (# : #), (σ : .), (σσ′ : .),
(. : τ), (σ : τ), (σσ′ : t),
(. : ττ ′), (σ : ττ ′), (σσ′ : ττ ′)

 (6)

We expect correspondences of the different types to
behave differently, so we encode the occurrences of dif-
ferent event kinds separately in the codebook:

Lmult = L(CB) + L(Data|CB) (7)

L(CB) =
∑
k∈K

[
log(Nk + 1) + log

(
Nk

Mk

)]
(8)

113

L(D|CB) = −
∑
e∈E

log Γ
(
c(e) + 1

)
(9)

+ log Γ

[∑
e∈E

(
c(e) + 1

)]
− log Γ(|E|)

where Nk is the number of possible events of kind k
and Mk the corresponding number of such events actu-
ally observed in the alignment;

∑
k Mk ≡ |E|.

5 Three-Dimensional Alignment
The baseline models align languages pairwise. The
alignment models allow us to learn 1-1 patterns of cor-
respondence in the language family. This model is eas-
ily extended to any number of languages. The model
in (Bouchard-Côté et al., 2007) also aligns more than
two languages at a time. We extend the 2-D model
to three dimensions as follows. We seek an alignment
where symbols correspond to each other in a 1-1 fash-
ion, as in the 2-D baseline. A three-dimensional align-
ment is a triplet of symbols (σ : τ : ξ) ∈ Σ. × T. × Ξ..
For example, the words meaning “9” in Finnish, Es-
tonian and Mordva, can be aligned simultaneously as:

y . h d e k s ä n
| | | | | | | | |
ü . h . e k s a .
| | | | | | | | |
v e χ . . k s a .

In 3-D alignment, the input data contains all examples
where words in at least two languages are present5—
i.e., a word may be missing from one of the languages,
(which allows us to utilize more of the data). Thus
we have two types of examples: complete—where all
three words present (as “9” above), and incomplete—
containing words in only two languages. For ex-
ample, for (haamu:—:čama)—“ghost” in Finnish and
Mordva—the cognate Estonian word is missing.

We next extend the 2-D count matrix and the 2-D
re-alignment algorithm to three dimensions. The 3-D
re-alignment matrix is directly analogous to the 2-D
version. For the alignment counts in 3-D, we handle
complete and incomplete examples separately.

Our “marginal” 3-D alignment model aligns three
languages simultaneously, using three marginal 2-D
matrices, each storing a pairwise 2-D alignment. The
marginal matrices for three languages are denoted
MΣT , MΣΞ and MTΞ. The algorithm optimizes the
total cost of the complete data, which is defined as the
sum of the three 2-D costs obtained from applying pre-
quential coding to the marginal alignment matrices.

When computing the cost for event e = (σ, τ, ξ), we
consider complete and incomplete examples separately.
In “incomplete” examples, we use the counts from the
corresponding marginal matrix directly. E.g., for event
count c(e), where e = (σ,−, ξ), and “−” denotes the
missing word, the event count is given by: MΣΞ(σ, ξ),

5This was true by definition in the baseline 2-D algorithm.

Figure 3: 3-dimensional alignment matrix.

and the cost of each alignment is computed as in the
baseline model, directly in two dimensions.

In case when the data triplet is complete—fully
observed—the alignment cost is computed as the sum
of the pairwise 2-D costs, given by three marginal
alignment count matrices:6

L(σ : τ : ξ) = LΣT (σ : τ)

+ LΣΞ(σ : ξ)

+ LTΞ(τ : ξ) (10)

The cost of each pairwise alignment is computed using
prequential two-part coding, as in sec. 4.1. Note that
when we register a complete alignment (σ, τ, ξ), we
register it in each of the base matrices—we increment
each of the marginal counts: MΣT (σ, τ), MΣΞ(σ, ξ),
and MTΞ(τ, ξ).

To calculate the transition costs in the Viterbi algo-
rithm, we also have two cases, complete and incom-
plete. For incomplete examples, we perform Viterbi
in 2-D, using the costs directly from the corresponding
marginal matrix, equation (5).

3-D re-alignment phase: for complete examples in
3-D, is a direct analogue of the 2-D re-alignment—in
the (i, j) plane—in eq. (2), extended to the third di-
mension, k. The cell V (σi, τj , ξk)—the cost of the
most probable path leading to the cell (i, j, k)—is cal-
culated by Dynamic Programming, using the symbol-
alignment costs L(σ : τ : ξ). In addition to the three
source cells as in eq. (2), in plane k, there are four ad-
ditional source cells from the previous plane, k − 1.

Visualization: We wish to visualize the distribution
of counts in the final 3-D alignment, except that now we
must deal with expected counts, rather than observed
counts, because some of the examples are incomplete.
We can form a 3-D visualization matrixM∗ as follows:

• Compute |D|, the total number of alignments
in the complete data (including the end-of-word
alignments)

6Note that this results in an incomplete code, since every
symbol is coded twice, but that does not affect the learning.

114

• For each cell (i, j, k) inM∗, the weight in that cell
is given by P (i : j : k) · |D|, where P (i : j : k) is
the probability of the alignment.

• The matrix of expected counts will have no zero-
weight cells, since there are no zero-probability
events—except (. : . : .). To suppress visualizing
events with very low expected counts, we don’t
show cells with counts below a threshold, say, 0.5.

A distribution of the expected counts in 3-D alignment
is shown in figure 3. The three languages are Finnish,
Estonian and Mordva. The area of each point in this
figure is proportional to the expected count of the cor-
responding 3-way alignment.

6 Nuisance Suffixes

The existing etymological datasets are not always per-
fectly suited to the alignment task as we have defined it
here. For example, the SSA contains mostly complete
word-forms from all the languages, as they would ap-
pear in a dictionary. As a consequence, this frequently
includes morphological material that is not relevant
from the point of view of etymology or alignment. To
illustrate this (in the Indo-European family), consider
aligning English maid and German mädchen—in Ger-
man, the word-form without the suffix has disappeared.
Many instances with such suffixes are found in the
SSA; StarLing presents stemmed data to a larger extent,
though assuring that every form in the dataset is per-
fectly stemmed is a very difficult task. From the point
of view of computational alignment, such “nuisance”
suffixes present a problem, by confusing the model.

We extend the model to handle, or discover, the nui-
sance suffixes automatically, as follows. Consider, in
the realignment matrix in Fig. 1, the cells (i, j) (marked
X ,) (i,m), and (j, n). We always end by transitioning
from cell marked �, to the terminal cell, via the spe-
cial end-of-word alignment event (# : #), whose cost
is computed from N , the number of word pairs in the
data (this final transition is not shown in the figure).

While previously, we could only reach the terminal
cell from cell � via event (# : #), we now also permit
a hyper-jump from any cell in the matrix to the terminal
cell, which is equivalent to treating the remainder of
source and/or target word as a nuisance suffix. Thus,
hyper-jump from cell marked X means that we code
the remaining symbols [σi+1...σn] in σ and [τj+1...τm]
in τ separately, not using the global count matrix.

That is, to align σ and τ , we first code the symbols
up to X jointly, prequentially, using the global count
matrix. After X , we code a special event (− : −),
meaning an aligned morpheme boundary, similar to
(# : #) which says we have aligned the word bound-
aries. Then we code the rest of [σi+1...σn], and the rest
of [τj+1...τm], both followed by #.

If we hyper-jump from cell (i,m), rather than from
X , then we code the event (− : #)—empty suffix on

Two-part model Suffix model
Fin-Est 21748.29 21445.01
Fin-Ugr 10987.98 10794.87

Table 1: Nuisance suffix models.

target side, and then code the rest of [σi+1...σn] in σ
and #. Symmetrically for the hyper-jump from (j,m).

The cost of each symbol in the suffix can be coded,
for example, according to: a uniform language model:
each source symbol costs − log 1/(|Σ|+ 1); a unigram
model: for each source symbol σ (including #), com-
pute its frequency p(σ) from the raw source data, and
let cost(σ) = − log p(σ); a bigram model; etc.

Table 1 compares the code length between the orig-
inal 1x1 two-part code model and a nuisance suffix
model (for two language pairs). The code length is al-
ways lower in the nuisance suffix model.

Although it finds instances of true nuisance suf-
fixes, the model may be fooled by certain phenom-
ena. For example, when aligning Finnish and Estonian,
the model decides that final vowels in Finnish which
have disappeared in Estonian are suffixes, whereas
that is historically not the case. To avoid such mis-
interpretation, the suffix detection feature should be
used in conjunction with other model variants, includ-
ing alignment of more than a pair of languages.

7 Results

One way to evaluate the presented models thoroughly
would require a gold-standard aligned corpus; the
models produce alignments, which would be com-
pared to expected alignments. Given a gold-standard,
we could measure performance quantitatively, e.g., in
terms of accuracy. However, no gold-standard align-
ment for the Uralic data currently exists, and building
one is very costly and slow.

Alignment: We can perform a qualitative evalua-
tion, by checking how many correct sound correspon-
dences a model finds—by inspecting the final align-
ment of the corpus and the alignment matrix. A matrix
for a 2-D, 1x1 two-part model alignment of Finnish-
Estonian is shown in figure 2. The size of each ball is
proportional to the number of alignments in the corpus
of the corresponding symbols.

Finnish and Estonian are closely related, and the
alignment shows a close correspondence—the model
finds the “diagonal,” i.e., most sounds correspond to
“themselves.” We must note that this model has no a
priori knowledge about the nature of the symbols, e.g.,
that Finnish a is identical to or has any relation to Esto-
nian a. The languages are coded separately, and they
may have different alphabets—as they do in general
(we use transcribed data).

Rules of correspondence: One of our main goals
is to model complex rules of correspondence among
languages. We can evaluate the models based on how

115

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0 500 1000 1500 2000 2500 3000 3500

C
om

pr
es

se
d

si
ze

 (
by

te
s)

Data set size

Aligning Finnish with Estonian

GZip
BZip2

two-part code
2x2-boundaries

Figure 4: Comparison of compression power. Two-part
code model refers to the 1x1 model that is described in
section 4.1 and 2x2-boundaries model multiple symbol
alignment model that is discussed in section 4.2.

well they discover rules, and how complex the rules
are. In Fig. 2, the baseline model finds that Fin. u ∼
Est. u, but sometimes to o—this entropy is left unex-
plained by this model. However, the more complex 2x2
model identifies the cause exactly—by discovering that
Finnish diphthongs uo, yö, ie correspond to Estonian
long vowels oo, öö, ee, which covers (i.e., explains!)
all instances of (u:o).

The plot shows many Finnish-Estonian corresp-
ondences, which can be found in handbooks,
e.g., (Lytkin, 1973; Sinor, 1997). For example, ä∼ä
vs. ä∼a about evenly—reflecting the rule that original
front vowels (ä) became back (a) in non-first syllables
in Estonian; word-final vowels a, i, ä, preserved in
Finnish are often deleted in Estonian; etc. These can
be observed directly in the alignment matrix, and in the
aligned corpus.

Compression: In figure 4, we compare the mod-
els against standard compressors, gzip and bzip, tested
on over 3200 Finnish-Estonian word pairs from SSA.
The data given to our models is processed by the com-
pressors, one word per line. Of course, our models
know that they should align pairs of consecutive lines.
This shows that learning about the “vertical” corresp-
ondences achieves much better compression rates—
extract regularity from the data.

Language distance: We can use alignment to mea-
sure inter-language distances. We align all languages
in StarLing pairwise, e.g., using a two-part 1x1 model.
We can then measure the Normalized Compression
Distance (Cilibrasi and Vitanyi, 2005):

NCD(a,b) =
C(a,b)−min(C(a,a), C(b,b))

max(C(a,a), C(b,b))

where 0 < NCD < 1, and C(a,b) is the compression
cost—i.e., the cost of the complete aligned data for lan-
guages a and b. The pairwise compression distances

Fin-Ugr

Ob’

Volga

Baltic

Hungarian

Hanty

Mansi

Finnish

Komi

Udmurt

Estonian

Saami
Mari

Mordva

Perm’

Figure 5: Finno-Ugric branch of the Uralic family

Figure 6: Finno-Ugric tree induced by NCD

are shown in table 2. We can then use these distances to
draw phylogenetic trees, using hierarchical clustering
methods. We used the UPGMA algorithm, (Murtagh,
1984), the resulting tree shown in Fig. 6. More so-
phisticated methods, such as the Fast Quartet method,
CompLearn, (Cilibrasi and Vitanyi, 2011) may produce
even more accurate trees. Even such a simple model
as the 1x1 baseline shows emerging patterns that mir-
ror the relationships in the Uralic family tree, shown
in Fig. 5, adapted from (Anttila, 1989). For exam-
ple, scanning the entries in the table corresponding to
Finnish, the compression distances grow as the corre-
sponding distance within the family tree grows. Sis-
ter languages (in bold) should be closest among all
their relations. This confirms that the model is able
to compress better—find more regularity in the data—
between languages that are are more closely related.

8 Conclusions and Future Work
We have presented a baseline model for alignment,
and several extensions. We have evaluated the mod-
els qualitatively, by examining the alignments and the
rules of correspondence that they discover, and quanti-
tatively by measuring compression cost and language
distances. We trust that the methods presented here
provide a good basis for further research.

We are developing methods that take context, or en-

116

fin khn kom man mar mrd saa udm ugr
est .37 .70 .70 .71 .70 .66 .58 .73 .77
fin .73 .69 .75 .69 .63 .58 .69 .77
khn .67 .63 .70 .71 .66 .71 .76
kom .67 .65 .67 .70 .41 .70
man .67 .71 .77 .68 .75
mar .64 .67 .67 .73
mrd .64 .70 .72
saa .68 .76
udm .75

Table 2: Pairwise normalized compression costs for Finno-Ugric sub-family of Uralic, in StarLing data.

vironment into account in modeling. The idea is to
code sounds and environments as vectors of phonetic
features and instead of aligning symbols, to align in-
dividual features of the symbols. The gain from intro-
ducing the context enables us to discover more com-
plex rules of correspondence. We also plan to extend
our models to diachronic reconstruction, which allows
reconstruction of proto forms.

Acknowledgments
This research was supported by the Uralink Project
of the Academy of Finland, grant 129185. We thank
Teemu Roos for his suggestions, and Arto Vihavainen
for his work on the implementation of the algorithms.

References
R. Anttila. 1989. Historical and comparative linguis-

tics. John Benjamins.

F. Barbancon, T. Warnow, D. Ringe, S. Evans, and
L. Nakhleh. 2009. An experimental study compar-
ing linguistic phylogenetic reconstruction methods.
In Proc. Conf. on Languages and Genes, UC Santa
Barbara. Cambridge University Press.

A. Bouchard-Côté, P. Liang, T.Griffiths, and D. Klein.
2007. A probabilistic approach to diachronic
phonology. In Proc. EMNLP-CoNLL, Prague.

R. Cilibrasi and P.M.B. Vitanyi. 2005. Clustering
by compression. IEEE Transactions on Information
Theory, 51(4).

R.L. Cilibrasi and P.M.B. Vitanyi. 2011. A fast quar-
tet tree heuristic for hierarchical clustering. Pattern
Recognition, 44(3):662–677.

P. Grünwald. 2007. The Minimum Description Length
Principle. MIT Press.

E. Itkonen and U.-M. Kulonen. 2000. Suomen Sano-
jen Alkuperä (The Origin of Finnish Words). Suo-
malaisen Kirjallisuuden Seura, Helsinki, Finland.

B. Kessler. 2001. The Significance of Word Lists:
Statistical Tests for Investigating Historical Con-
nections Between Languages. The University of
Chicago Press, Stanford, CA.

G. Kondrak. 2002. Determining recurrent sound cor-
respondences by inducing translation models. In
Proceedings of COLING 2002, Taipei.

G. Kondrak. 2003. Identifying complex sound cor-
respondences in bilingual wordlists. In A. Gelbukh
(Ed.) CICLing, Mexico. Springer LNCS, No. 2588.

G. Kondrak. 2004. Combining evidence in cognate
identification. In Proceedings of Canadian-AI 2004,
London, ON. Springer-Verlag LNCS, No. 3060.

P. Kontkanen, P. Myllymäki, and H. Tirri. 1996. Con-
structing Bayesian finite mixture models by the EM
algorithm. Technical Report NC-TR-97-003, ES-
PRIT Working Group on NeuroCOLT.

V. I. Lytkin. 1973. Voprosy Finno-Ugorskogo Jazykoz-
nanija (Issues in Finno-Ugric Linguistics), volume
1–3. Nauka, Moscow.

F. Murtagh. 1984. Complexities of hierarchic cluster-
ing algorithms: the state of the art. Computational
Statistics Quarterly, 1.

L. Nakhleh, D. Ringe, and T. Warnow. 2005. Perfect
phylogenetic networks: A new methodology for re-
constructing the evolutionary history of natural lan-
guages. Language, 81(2).

K. Rédei. 1988–1991. Uralisches etymologisches
Wörterbuch. Harrassowitz, Wiesbaden.

D. Ringe, T. Warnow, and A. Taylor. 2002. Indo-
european and computational cladistics. Transact.
Philological Society, 100(1).

J. Rissanen. 1978. Modeling by shortest data descrip-
tion. Automatica, 14(5).

Denis Sinor, editor. 1997. The Uralic Languages: De-
scription, History and Foreign Influences (Handbook
of Uralic Studies). Brill Academic Publishers.

S. A. Starostin. 2005. Tower of babel: Etymological
databases. http://newstar.rinet.ru/.

H. Wettig and R. Yangarber. 2011. Probabilistic mod-
els for alignment of etymological data. In Proc.
NODALIDA, Riga, Latvia.

117

174

Publication V

Hannes Wettig, Kirill Reshetnikov and Roman Yangarber

Using context and phonetic features
in models of etymological sound change

EACL Joint Workshop of LINGVIS & UNCLH 2012
Avignon, France

c© 2011 Association for Computational Linguistics.
Reprinted with permission.

175

176

Using context and phonetic features
in models of etymological sound change

Hannes Wettig1, Kirill Reshetnikov2 and Roman Yangarber1
1Department of Computer Science 2Institute of Linguistics
University of Helsinki, Finland Academy of Sciences

First.Last@cs.helsinki.fi Moscow, Russia

Abstract

This paper presents a novel method for
aligning etymological data, which mod-
els context-sensitive rules governing sound
change, and utilizes phonetic features of the
sounds. The goal is, for a given corpus of
cognate sets, to find the best alignment at
the sound level. We introduce an imputa-
tion procedure to compare the goodness of
the resulting models, as well as the good-
ness of the data sets. We present evalu-
ations to demonstrate that the new model
yields improvements in performance, com-
pared to previously reported models.

1 Introduction

This paper introduces a context-sensitive model
for alignment and analysis of etymological data.
Given a raw collection of etymological data (the
corpus)—we first aim to find the “best” alignment
at the sound or symbol level. We take the corpus
(or possibly several different corpora) for a lan-
guage family as given; different data sets are typ-
ically conflicting, which creates the need to deter-
mine which is more correct. Etymological data
sets are found in digital etymological databases,
such as ones we use for the Uralic language fam-
ily. A database is typically organized into cog-
nate sets; all elements within a cognate set are
posited (by the database creators) to be derived
from a common origin, which is a word-form in
the ancestral proto-language.

Etymology encompasses several problems,
including: discovery of sets of cognates—
genetically related words; determination of ge-
netic relations among groups of languages, based
on linguistic data; discovering regular sound cor-
respondences across languages in a given lan-

guage family; and reconstruction of forms in the
proto-languages.

Computational methods can provide valuable
tools for the etymological community. The meth-
ods can be judged by how well they model certain
aspects of etymology, and by whether the auto-
matic analysis produces results that match theo-
ries established by manual analysis.

In this work, we allow all the data—and only
the data—to determine what rules underly it,
rather than relying on external (and possibly bi-
ased) rules that try to explain the data. This ap-
proach will provide a means of measuring the
quality of the etymological data sets in terms of
their internal consistency—a dataset that is more
consistent should receive a higher score. We seek
methods that analyze the data automatically, in
an unsupervised fashion, to determine whether a
complete description of the correspondences can
be discovered automatically, directly from raw
etymological data—cognate sets within the lan-
guage family. Another way to state the question
is: what alignment rules are “inherently encoded”
in the given corpus itself.

At present, our aim is to analyze given etymo-
logical datasets, rather than to construct new ones
from scratch. Because our main goal is to de-
velop methods that are as objective as possible,
the models make no a priori assumptions or “uni-
versal” principles—e.g., no preference to align
vowel with vowels, or a symbol with itself. The
models are not aware of the identity of a symbol
across languages, and do not try to preserve iden-
tity, of symbols, or even of features—rather they
try to find maximally regular correspondences.

In Section 2 we describe the data used in our
experiments, and review approaches to etymolog-
ical alignment over the last decade. We formalize
the problem of alignment in Section 3, give the

177

Uralic tree

Figure 1: Finno-Ugric branch of Uralic language fam-
ily (the data used in the experiments in this paper)

technical details of our models in Section 4. We
present results and discussion in Sections 5 and 6.

2 Data and Related Work

We use two large Uralic etymological resources.
The StarLing database of Uralic, (Starostin,
2005), based on (Rédei, 1988 1991), contains
over 2500 cognate sets. Suomen Sanojen Alku-
perä (SSA), “The Origin of Finnish Words”, a
Finnish etymological dictionary, (Itkonen and Ku-
lonen, 2000), has over 5000 cognate sets, (about
half of which are only in languages from the
Balto-Finnic branch, closest to Finnish). Most
importantly, for our models, SSA gives “dictio-
nary” word-forms, which may contain extraneous
morphological material, whereas StarLing data is
mostly stemmed.

One traditional arrangement of the Uralic lan-
guages1 is shown in Figure 1. We model etymo-
logical processes using these Uralic datasets.

The methods in (Kondrak, 2002) learn regular
one-to-one sound correspondences between pairs
of related languages in the data. The methods
in (Kondrak, 2003; Wettig et al., 2011) find more
complex (one-to-many) correspondences. These
models operate on one language pair at a time;
also, they do not model the context of the sound
changes, while most etymological changes are
conditioned on context. The MCMC-based model
proposed in (Bouchard-Côté et al., 2007) explic-
itly aims to model the context of changes, and op-

1Adapted from Encyclopedia Britannica and (Anttila,
1989)

erates on more than a pair of languages.2

We should note that our models at present op-
erate at the phonetic level only, they leave seman-
tic judgements of the database creators unques-
tioned. While other work, e.g. (Kondrak, 2004),
has attempted to approach semantics by compu-
tational means as well, our model uses the given
cognate set as the fundamental unit. In our work,
we do not attempt the problem of discovering cog-
nates, addressed, e.g., in, (Bouchard-Côté et al.,
2007; Kondrak, 2004; Kessler, 2001). We begin
instead with a set of etymological data (or more
than one set) for a language family as given. We
focus on the principle of recurrent sound corre-
spondence, as in much of the literature, includ-
ing (Kondrak, 2002; Kondrak, 2003), and others.

As we develop our alignment models at the
sound or symbol level, in the process of evalu-
ation of these models, we also arrive at model-
ing the relationships among groups of languages
within the family. Construction of phylogenies is
studied extensively, e.g., by (Nakhleh et al., 2005;
Ringe et al., 2002; Barbançon et al., 2009). This
work differs from ours in that it operates on manu-
ally pre-selected sets of characters, which capture
divergent features of languages within the family,
whereas we operate on the raw, complete data.

There is extensive work on alignment in the
machine-translation (MT) community, and it has
been observed that methods from MT alignment
may be projected onto alignment in etymology.
The intuition is that translation sentences in MT
correspond to cognate words in etymology, while
words in MT correspond to sounds in etymology.
The notion of regularity of sound change in et-
ymology, which is what our models try to cap-
ture, is loosely similar to contextually conditioned
correspondence of translation words across lan-
guages. For example, (Kondrak, 2002) employs
MT alignment from (Melamed, 1997; Melamed,
2000); one might employ the IBM models for
MT alignment, (Brown et al., 1993), or the HMM
model, (Vogel et al., 1996). Of the MT-related
models, (Bodrumlu et al., 2009) is similar to ours
in that it is based on MDL (the Minimum Descrip-
tion Length Principle, introduced below).

2Using this method, we found that the running time did
not scale well for more than three languages.

178

3 Aligning Pairs of Words

We begin with pairwise alignment: aligning pairs
of words, from two related languages in our
corpus of cognates. For each word pair, the
task of alignment means finding exactly which
symbols correspond. Some symbols may align
with “themselves” (i.e., with similar or identi-
cal sounds), while others may have undergone
changes during the time when the two related lan-
guages have been evolving separately. The sim-
plest form of such alignment at the symbol level
is a pair (σ : τ) ∈ Σ × T , a single symbol σ
from the source alphabet Σ with a symbol τ from
the target alphabet T . We denote the sizes of the
alphabets by |Σ| and |T |.

To model insertions and deletions, we augment
both alphabets with a special empty symbol—
denoted by a dot—and write the augmented al-
phabets as Σ. and T.. We can then align
word pairs such as vuosi—al (meaning “year” in
Finnish and Xanty) , for example as any of:

v u o s i
| | | | |
a l . . .

v u o s i
| | | | |
. a . l .

etc...

The alignment on the right then consists of the
symbol pairs: (v:.), (u:a), (o:.), (s:l), (i:.).

4 Context Model with Phonetic Features

The context-aware alignment method we present
here is built upon baseline models published pre-
viously, (Wettig et al., 2011), where we presented
several models that do not use phonetic features
or context. Similarly to the earlier ones, the cur-
rent method is based on the Minimum Description
Length (MDL) Principle, (Grünwald, 2007).

We begin with a raw set of (observed) data—
the not-yet-aligned word pairs. We would like
to find an alignment for the data—which we
will call the complete data—complete with align-
ments, that make the most sense globally, in terms
of embodying regular correspondences. We are
after the regularity, and the more regularity we
can find, the “better” our alignment will be (its
goodness will be defined formally later). MDL
tells us that the more regularity we can find in
the data, the fewer bits we will need to encode
it (or compress it). More regularity means lower
entropy in the distribution that describes the data,
and lower entropy allows us to construct a more

economical code. That is, if we have no knowl-
edge about any regularly of correspondence be-
tween symbols, the joint distribution over all pos-
sible pairs of symbols will be very flat (high en-
tropy). If we know that certain symbol pairs align
frequently, the joint distribution will have spikes,
and lower entropy. In (Wettig et al., 2011) we
showed how starting with a random alignment a
good joint distribution can be learned using MDL.
However the “rules” those baseline models were
able to learn were very rudimentary, since they
could not use any information in the context, and
we know that many regular correspondences are
conditioned by context.

We now introduce models that leverage infor-
mation from the context to try to reduce the un-
certainty in the distributions further, lowering the
coding cost. To do that, we will code sounds
in terms of their phonetic features: rather than
coding the symbols (sounds) as atomic, we code
them as vectors of phonetic features. Rather than
aligning symbol pairs, we align the correspond-
ing features of the symbols. While coding each
feature, the model can make use of features of
other sounds in its context (environment), through
a special decision tree built for that feature.

4.1 Features
We will code each symbol, to be aligned in the
complete data, as a feature vector. First we code
the Type feature, with values: K (consonant), V
(vowel), dot, and word boundary, which we de-
note as #. Consonants and vowels have their own
sets of features, with 2–8 values per feature:

Consonant articulation
M Manner plosive, fricative, glide, ...
P Place labial, dental, ..., velar
X Voiced – , +
S Secondary – , affricate, aspirate, ...

Vowel articulation
V Vertical high–low
H Horizontal front–back
R Rounding – , +
L Length 1–5

4.2 Contexts
While coding any symbol, the model will be al-
lowed to query a fixed, finite set of candidate con-
texts. A context is a triplet (L,P, F), where L
is the level—either source or target,—and P is

179

one of the positions that the model may query—
relative to the position currently being coded; for
example, we may allow positions as in Fig. 2. F is
one of the possible features found at that position.
Therefore, we will have about 2 levels * 8 posi-
tions * 2–6 features ≈ 80 candidate contexts that
can be queried by the model, as explained below.

I itself,
–P previous position
–S previous non-dot symbol
–K previous consonant
–V previous vowel
+S previous or self non-dot symbol
+K previous or self consonant
+V previous or self vowel

Figure 2: An example of a set of possible positions
in the context—relative to the position currently being
coded—that can be queried by the context model.

4.3 The Two-Part Code

We code the complete (i.e., aligned) data using a
two-part code, following the MDL Principle. We
first code which particular model instance we se-
lect from our class of models, and then code the
data, given the defined model. Our model class
is defined as: a set of decision trees (forest), with
one tree to predict each feature on each level. The
model instance will define the particular struc-
tures for each of the trees.

The forest consists of 18 decision trees, one for
each feature on the source and the target level: the
type feature, 4 vowel and 4 consonant features,
times 2 levels. Each node in such tree will ei-
ther be a leaf, or will be split by querying one of
the candidate contexts defined above. The cost of
coding the structure of the tree is one bit for every
node—to encode whether this node was split (is
an internal node) or is a leaf—plus≈ log 80 times
the number of internal nodes—to encode which
particular context was chosen to split that node.
We will explain how the best context to split on is
chosen in Sec. 4.6.

Each feature and level define a tree, e.g., the
“voiced” (X) feature of the source symbols cor-
responds to the source-X tree. A node N in this
tree holds a distribution over the values of X of
only those symbol instances in the complete data
that have reached in N by following the context

queries, starting from the root. The tree struc-
ture tells us precisely which path to follow—
completely determined by the context. For exam-
ple, when coding a symbol α based on another
symbol found in the context of α—at some level
(say, target), some position (say, –K), and one of
its features (say, M)—the next edge down the tree
is determined by that feature’s value; and so on,
down to a leaf. For an example of an actual deci-
sion tree learned by the model, see Fig. 5.

To compute the code length of the complete
data, we only need to take into account the dis-
tributions at the leaves. We could choose from a
variety of coding methods; the crucial point is that
the chosen code will assign a particular number—
the cost—to every possible alignment of the data.
This code-length, or cost, will then serve as the
objective function—i.e., it will be the value that
the algorithm will try to optimize. Each reduc-
tion in cost will correspond directly to reduction
in the entropy of the probability distribution of
the symbols, which in turn corresponds to more
certainty (i.e., regularity) in the correspondences
among the symbols, and to improvement in the
alignment. This is the link to our goal, and the
reason for introducing code lengths—it gives us
a single number that describes the quality of an
alignment.

We use Normalized Maximum Likelihood
(NML), (Rissanen, 1996) as our coding scheme.
We choose NML because it has certain optimal-
ity properties. Using NML, we code the distri-
bution at each leaf node separately, and summing
the costs of all leaves gives the total cost of the
aligned data—the value of our objective function.

Suppose n instances end up in a leaf node N ,
of the λ-level tree, for feature F having k val-
ues (e.g., consonants satisfying N ’s context con-
straints in the source-X tree, with k = 2 values:
− and +), and the values are distributed so that
ni instances have value i (with i ∈ {1, . . . , k}).
Then this requires an NML code-length of

LNML(λ;F ;N) = − logPNML(λ;F ;N)

= − log

∏
i

(
ni
n

)ni

C(n, k)
(1)

Here
∏

i

(
ni
n

)ni is the maximum likelihood of the
multinomial data at node N , and the term

C(n, k) =
∑

n′
1+...+n′

k=n

∏

i

(
n′i
n

)n′
i

(2)

180

is a normalizing constant to make PNML a prob-
ability distribution.

In the MDL literature, e.g., (Grünwald, 2007),
the term − logC(n, k) is called the stochastic
complexity or the (minimax) regret of the model,
(in this case, the multinomial model). The NML
distribution provides the unique solution to the
minimax problem posed in (Shtarkov, 1987),

min
P̂

max
xn

log
P (xn|Θ̂(xn))

P̂ (xn)
(3)

where Θ̂(xn) = arg maxΘ P(xn) are the maxi-
mum likelihood parameters for the data xn. Thus,
PNML minimizes the worst-case regret, i.e., the
number of excess bits in the code as compared to
the best model in the model class, with hind-sight.
For details on the computation of this code length
see (Kontkanen and Myllymäki, 2007).

Learning the model from the observed data now
means aligning the word pairs and building the
decision trees in such a way as to minimize the
two-part code length: the sum of the model’s code
length—to encode the structure of the trees,—
and the data’s code length—to encode the aligned
word pairs, using these trees.

4.4 Summary of the Algorithm

The full learning algorithm runs as follows:
We start with an initial random alignment for

each pair of words in the corpus, i.e., for each
word pair choose some random path through the
matrix depicted in Figure 3.

From then on we alternate between two steps:
A. re-build the decision trees for all features on
source and target levels, and B. re-align all word
pairs in the corpus. Both of these operations
monotonically decrease the two-part cost function
and thus compress the data.

We continue until we reach convergence.

4.5 Re-alignment Procedure

To align source word ~σ consisting of symbols
~σ = [σ1...σn], ~σ ∈ Σ∗ with target word ~τ =
[τ1...τm] we use dynamic programming. The
tree structures are considered fixed, as are the
alignments of all word pairs, except the one cur-
rently being aligned—which is subtracted from
the counts stored at the leaf nodes.

We now fill the matrix V , left-to-right, top-to-
bottom. Every possible alignment of ~σ and ~τ cor-

Figure 3: Dynamic programming matrix V, to search
for the most probable alignment

responds to exactly one path through this matrix:
starting with cost equal to 0 in the top-left cell,
moving only downward or rightward, and termi-
nating in the bottom-right cell. In this Viterbi-like
matrix, every cell corresponds to a partially com-
pleted alignment: reaching cell (i, j) means hav-
ing read off i symbols of the source word and j
symbols of the target. Each cell V (i, j)—marked
X in the Figure—stores the cost of the most prob-
able path so far: the most probable way to have
scanned ~σ through symbol σi and ~τ through τj :

V (i, j) = min

V (i, j − 1) +L(. : τj)

V (i− 1, j) +L(σi : .)

V (i− 1, j − 1) +L(σi : τj)

Each term V (·, ·) has been computed earlier by
the dynamic programming; the term L(·)—the
cost of aligning the two symbols, inserting or
deleting—is determined by the change in data
code length it induces to add this event to the cor-
responding leaf in all the feature trees it concerns.

In particular, the cost of the most probable com-
plete alignment of the two words will be stored in
the bottom-right cell, V (n,m), marked �.

4.6 Building Decision Trees

Given a complete alignment of the data, we need
to build a decision tree, for each feature on both
levels, yielding the lowest two-part cost. The term
“decision tree” is meant in a probabilistic sense
here: instead of a single value, at each node we
store a distribution of the corresponding feature
values, over all instances that reach this node. The
distribution at a leaf is then used to code an in-
stance when it reaches the leaf in question. We
code the features in some fixed, pre-set order, and
source level before target level.

181

We now describe in detail the process of build-
ing the tree for feature X, for the source level, (we
will need do the same for all other features, on
both levels, as well). We build this tree as follows.
First, we collect all instances of consonants on the
source level, and gather the the counts for feature
X; and build an initial count vector; suppose it is:

value of X: + –
1001 1002

This vector is stored at the root of the tree; the
cost of this node is computed using NML, eq. 1.

Next, we try to split this node, by finding such
a context that if we query the values of the feature
in that context, it will help us reduce the entropy
in this count vector. We check in turn all possi-
ble candidate contexts, (L,P, F), and choose the
best one. Each candidate refers to some symbol
found on the source (σ) or the target (τ) level, at
some relative position P , and to one of that sym-
bol’s features F . We will condition the split on
the possible values of F . For each candidate, we
try to split on its feature’s values, and collect the
resulting alignment counts.

Suppose one such candidate is (σ, –V, H),
i.e., (source-level, previous vowel, Horizontal fea-
ture), and suppose that the H-feature has two val-
ues: front/back. The vector at the root node (re-
call, this tree is for the X-feature) would then split
into two vectors, e.g.:

value of X: + –
X | H=front 1000 1
X | H=back 1 1001

This would likely be a very good split, since
it reduces the entropy of the distribution in each
row almost to zero. The criterion that guides the
choice of the best candidate to use for splitting a
node is the sum of the code lengths of the resulting
split vectors, and the code length is proportional
to the entropy.

We go through all candidates exhaustively, and
greedily choose the one that yields the greatest re-
duction in entropy, and drop in cost. We proceed
recursively down the tree, trying to split nodes,
and stop when the total tree cost stops decreasing.

This completes the tree for feature X on level σ.
We build trees for all features and levels similarly,
from the current alignment of the complete data.

We augment the set of possible values at ev-
ery node with two additional special branches: 6=,
meaning the symbol at the queried position is of

the wrong type and does not have the queried fea-
ture, and #, meaning the query ran past the be-
ginning of the word.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 500 1000 1500 2000 2500 3000 3500

C
om

pr
es

se
d

si
ze

 (
K

-b
yt

es
)

Data set size: number of word pairs (average word-length 5.5 bytes)

Comparison of compression power: Finnish-Estonian data

Gzip
Bzip2

Two-part code
2-2 multiple-symbols

Context-0

Figure 4: Comparison of compression power: Finnish-
Estonian data from SSA, using the context model vs.
the baseline models and standard compressors.

5 Evaluation and Results

One way to evaluate the presented models would
require a gold-standard aligned corpus; the mod-
els produce alignments which could be compared
to the gold-standard alignments, and we could
measure performance quantitatively, e.g., in terms
of accuracy. However, building a gold-standard
aligned corpus for the Uralic data proved to be
extremely difficult. In fact, it quickly becomes
clear that this problem is at least as difficult as
building a full reconstruction for all internal nodes
in the family tree (and probably harder), since it
requires full knowledge of all sound correspon-
dences within the family. It is also compounded
by the problem that the word-forms in the corpus
may contain morphological material that is ety-
mologically unrelated: some databases give “dic-
tionary” forms, which contain extraneous affixes,
and thereby obscure which parts of a given word
form stand in etymological relationship with other
members in the cognates set, and which do not.
We therefore introduce other methods to evaluate
the models.

Compression: In figure 4, we compare the
context model, and use as baselines the standard
data compressors, Gzip and Bzip, as well as the
more basic models presented in (Wettig et al.,
2011), (labeled “1x1 and “2x2”). We test the
compression of up to 3200 Finnish-Estonian word
pairs, from SSA. Gzip and Bzip compress data

182

fin khn kom man mar mrd saa udm ugr

est 0.26 0.66 0.64 0.65 0.61 0.57 0.57 0.62 0.62
fin 0.63 0.64 0.65 0.59 0.56 0.50 0.62 0.63
khn 0.65 0.58 0.69 0.64 0.67 0.66 0.66
kom 0.63 0.68 0.66 0.70 0.39 0.66
man 0.68 0.65 0.72 0.62 0.62
mar 0.65 0.69 0.65 0.66
mrd 0.58 0.66 0.63
saa 0.67 0.70
udm 0.65

Table 1: Pairwise normalized edit distances for Finno-
Ugric languages, on StarLing data (symmetrized by
averaging over the two directions of imputation).

by finding regularities in it (i.e., frequent sub-
strings). The comparison with Gzip is a “san-
ity check”: we would like to confirm whether
our models find more regularity in the data than
would an off-the-shelf data compressor, that has
no knowledge that the words in the data are ety-
mologically related. Of course, our models know
that they should align pairs of consecutive lines.
This test shows that learning about the “vertical”
correspondences achieves much better compres-
sion rates—allows the models to extract greater
regularity from the data.

Figure 5: Part of a tree, showing the rule for voicing of
medial plosives in Estonian, conditioned on Finnish.

Rules of correspondence: One our main goals
is to model rules of correspondence among lan-
guages. We can evaluate the models based on how
good they are at discovering rules. (Wettig et al.,
2011) showed that aligning multiple symbols cap-
tures some of the context and thereby finds more
complex rules than their 1-1 alignment model.

However, certain alignments, such as t∼t/d,
p∼p/b, and k∼k/g between Finnish and Esto-
nian, cannot be explained by the multiple-symbol
model. This is due to the rule of voicing of
word-medial plosives in Estonian. This rule could

be expressed in terms of Two-level Morphol-
ogy, (Koskenniemi, 1983) as: a voiceless plosive
in Finnish, may correspond to voiced in Esto-
nian, if not word-initial.3 The context model
finds this rule, shown in Fig. 5. This tree codes
the Target-level (i.e., Estonian) Voiced consonant
feature. In each node, the counts of correspond-
ing feature values are shown in brackets. In
the root node—prior to knowing anything about
the environment—there is almost complete un-
certainty (i.e., high entropy) about the value of
Voiced feature of an Estonian consonant: 821
voiceless to 801 voiced in our data. Redder nodes
indicate higher entropy, bluer nodes—lower en-
tropy. The query in the root node tells us to check
the context Finnish Itself Voiced for the most in-
formative clue about whether the current Estonian
consonant is voiced or not. Tracing the options
down left to right from the root, we obtain the
rules. The leftmost branch says, if the Finnish
is voiced (⊕), then the Estonian is almost cer-
tainly voiced as well—615 voiced to 2 voiceless
in this case. If the Finnish is voiceless (Finnish
Itself Voiced =), it says voicing may occur, but
only in the red nodes—i.e., only if preceded by
a voiced consonant on Estonian level (the branch
marked by ⊕, 56 cases), or—if previous posi-
tion is not a consonant (the 6= branch indicates
that the candidate’s query does not apply: i.e., the
sound found in that position is not a consonant)—
it can be voiced only if the corresponding Finnish
is a plosive (P, 78 cases). The blue nodes in this
branch say that otherwise, the Estonian consonant
almost certainly remains voiceless.

The context models discover numerous com-
plex rules for different language pairs. For ex-
ample, they learn a rule that initial Finnish k
“changes” (corresponds) to h in Hungarian, if it
is followed by a back vowel; the correspondence
between Komi trills and Udmurt sibilants; etc.

Imputation: We introduce a novel test of the
quality of the models, by using them to impute
unseen data, as follows. For a given model,
and a language pair (L1, L2)—e.g., (Finnish,
Estonian)—hold out one word pair, and train the
model on the remaining data. Then show the
model the hidden Finnish word and let it guess

3In fact, phonetically, in modern spoken Estonian, the
consonants that are written using the symbols b,d,g are not
technically voiced, but that is a finer point, we use this rule
for illustration of the principle.

183

the corresponding Estonian. Imputation can be
done for all models with a simple dynamic pro-
gramming algorithm, similar to the Viterbi-like
search used during training. Formally, given the
hidden Finnish string, the imputation procedure
selects from all possible Estonian strings the most
probable Estonian string, given the model. We
then compute an edit distance between the im-
puted sting and the true withheld Estonian word
(e.g., using the Levenshtein distance). We repeat
this procedure for all word pairs in the (L1, L2)
data set, sum the edit distances and normalize by
the total size of the (true) L2 data—this yields the
Normalized Edit Distance NED(L2|L1,M) be-
tween L1 and L2, under model M .

Imputation is a more intuitive measure of the
model’s quality than code length, with a clear
practical interpretation. NED is also the ultimate
test of the model’s quality. If model M im-
putes better than M ′—i.e., NED(L2|L1,M) <
NED(L2|L1,M

′)—then it is difficult to argue
that M could be in any sense “worse” than M ′—
it has learned more about the regularities between
L1 and L2, and it knows more about L2 given
L1. The context model, which has much lower
cost than the baseline, almost always has lower
NED. This also yields an important insight: it
is an encouraging indication that optimizing the
code length is a good approach—the algorithm
does not optimize NED directly, and yet the cost
correlates strongly with NED, which is a simple
and intuitive measure of the model’s quality.

6 Discussion

We have presented a novel feature-based context-
aware MDL model, and a comparison of its per-
formance against prior models for the task of
alignment of etymological data. We have eval-
uated the models by examining the the rules of
correspondence that they discovers, by comparing
compression cost, imputation power and language
distances induced by the imputation. The models
take only the etymological data set as input, and
require no further linguistic assumptions. In this
regard, they is as objective as possible, given the
data. The data set itself, of course, may be highly
subjective and questionable.

The objectivity of models given the data now
opens new possibilities for comparing entire data
sets. For example, we can begin to compare the
Finnish and Estonian datasets in SSA vs. Star-

Ling, although the data sets have quite different
characteristics, e.g., different size—3200 vs. 800
word pairs, respectively—and the comparison is
done impartially, relying solely on the data pro-
vided. Another direct consequence of the pre-
sented methods is that they enable us to quantify
uncertainty of entries in the corpus of etymologi-
cal data. For example, for a given entry x in lan-
guage L1, we can compute exactly the probabil-
ity that x would be imputed by any of the models,
trained on all the remaining data from L1 plus any
other set of languages in the family. This can be
applied equally to any entry, in particular to en-
tries marked dubious by the database creators.

We can use this method to approach the ques-
tion of comparison of “competing” etymological
datasets. The cost of an optimal alignment ob-
tained over a given data set serves as a measure of
its internal consistency.

We are currently working to combine the con-
text model with 3- and higher-dimensional mod-
els, and to extend these models to perform di-
achronic imputation, i.e., reconstruction of proto-
forms. We also intend to test the models on
databases of other language families.

Acknowledgments

We are very grateful to the anonymous reviewers
for their thoughtful and helpful comments. We
thank Suvi Hiltunen for the implementation of the
models, and Arto Vihavainen for implementing
some of the earlier models. This research was
supported by the Uralink Project, funded by the
Academy of Finland and by the Russian Fund for
the Humanities.

References
Raimo Anttila. 1989. Historical and comparative lin-

guistics. John Benjamins.
François G. Barbançon, Tandy Warnow, Don Ringe,

Steven N. Evans, and Luay Nakhleh. 2009. An ex-
perimental study comparing linguistic phylogenetic
reconstruction methods. In Proceedings of the Con-
ference on Languages and Genes, UC Santa Bar-
bara. Cambridge University Press.

Tugba Bodrumlu, Kevin Knight, and Sujith Ravi.
2009. A new objective function for word alignment.
In Proc. NAACL Workshop on Integer Linear Pro-
gramming for NLP.

Alexandre Bouchard-Côté, Percy Liang, Thomas Grif-
fiths, and Dan Klein. 2007. A probabilistic ap-

184

proach to diachronic phonology. In Proceedings
of the 2007 Joint Conference on Empirical Meth-
ods in Natural Language Processing and Com-
putational Natural Language Learning (EMNLP-
CoNLL), pages 887–896, Prague, June.

Peter F. Brown, Vincent J. Della Pietra, Stephen A.
Della Pietra, and Robert. L. Mercer. 1993. The
mathematics of statistical machine translation: Pa-
rameter estimation. Computational Linguistics,
19(2):263–311.

Peter Grünwald. 2007. The Minimum Description
Length Principle. MIT Press.

Erkki Itkonen and Ulla-Maija Kulonen. 2000.
Suomen Sanojen Alkuperä (The Origin of Finnish
Words). Suomalaisen Kirjallisuuden Seura,
Helsinki, Finland.

Brett Kessler. 2001. The Significance of Word Lists:
Statistical Tests for Investigating Historical Con-
nections Between Languages. The University of
Chicago Press, Stanford, CA.

Grzegorz Kondrak. 2002. Determining recur-
rent sound correspondences by inducing translation
models. In Proceedings of COLING 2002: 19th In-
ternational Conference on Computational Linguis-
tics, pages 488–494, Taipei, August.

Grzegorz Kondrak. 2003. Identifying complex sound
correspondences in bilingual wordlists. In A. Gel-
bukh, editor, Computational Linguistics and Intel-
ligent Text Processing (CICLing-2003), pages 432–
443, Mexico City, February. Springer-Verlag Lec-
ture Notes in Computer Science, No. 2588.

Grzegorz Kondrak. 2004. Combining evidence in
cognate identification. In Proceedings of the Sev-
enteenth Canadian Conference on Artificial Intelli-
gence (Canadian AI 2004), pages 44–59, London,
Ontario, May. Lecture Notes in Computer Science
3060, Springer-Verlag.

Petri Kontkanen and Petri Myllymäki. 2007. A
linear-time algorithm for computing the multino-
mial stochastic complexity. Information Processing
Letters, 103(6):227–233.

Kimmo Koskenniemi. 1983. Two-level morphol-
ogy: A general computational model for word-form
recognition and production. Ph.D. thesis, Univer-
sity of Helsinki, Finland.

I. Dan Melamed. 1997. Automatic discovery of non-
compositional compounds in parallel data. In The
Second Conference on Empirical Methods in Nat-
ural Language Processing, pages 97–108, Hissar,
Bulgaria.

I. Dan Melamed. 2000. Models of translational equiv-
alence among words. Computational Linguistics,
26(2):221–249.

Luay Nakhleh, Don Ringe, and Tandy Warnow. 2005.
Perfect phylogenetic networks: A new methodol-
ogy for reconstructing the evolutionary history of
natural languages. Language (Journal of the Lin-
guistic Society of America), 81(2):382–420.

Károly Rédei. 1988–1991. Uralisches etymologisches
Wörterbuch. Harrassowitz, Wiesbaden.

Don Ringe, Tandy Warnow, and A. Taylor. 2002.
Indo-European and computational cladis-
tics. Transactions of the Philological Society,
100(1):59–129.

Jorma Rissanen. 1996. Fisher information and
stochastic complexity. IEEE Transactions on Infor-
mation Theory, 42(1):40–47, January.

Yuri M. Shtarkov. 1987. Universal sequential coding
of single messages. Problems of Information Trans-
mission, 23:3–17.

Sergei A. Starostin. 2005. Tower of babel: Etymolog-
ical databases. http://newstar.rinet.ru/.

Stephan Vogel, Hermann Ney, and Christoph Till-
mann. 1996. HMM-based word alignment in sta-
tistical translation. In Proceedings of 16th Confer-
ence on Computational Linguistics (COLING 96),
Copenhagen, Denmark, August.

Hannes Wettig, Suvi Hiltunen, and Roman Yangarber.
2011. MDL-based Models for Alignment of Et-
ymological Data. In Proceedings of RANLP: the
8th Conference on Recent Advances in Natural Lan-
guage Processing, Hissar, Bulgaria.

185

186

Publication VI

Hannes Wettig, Javad Nouri, Kirill Reshetnikov and Roman Yangarber

Information-Theoretic Methods
for Analysis and Inference in Etymology

Pp. 52–55 in Proceedings of the Fifth Workshop on Information Theo-
retic Methods in Science and Engineering (WITMSE 2012)
Edited by Steven de Rooij, Wojciech Kot lowski, Jorma Rissanen, Petri
Myllymäki, Teemu Roos and Kenji Yamanishi.

c© 2012 the authors

187

188

INFORMATION-THEORETIC METHODS
FOR ANALYSIS AND INFERENCE IN ETYMOLOGY

Hannes Wettig1, Javad Nouri1, Kirill Reshetnikov2 and Roman Yangarber1

1Department of Computer Science, University of Helsinki, Finland, First.Last@cs.helsinki.fi
2Academy of Sciences, Institute of Linguistics, Moscow, Russia.

ABSTRACT

We introduce a family of minimum description length mod-
els which explicitly utilizes phonetic features and captures
long-range contextual rules that condition recurrent cor-
respondences of sounds within a language family. We
also provide an algorithm to learn a model from this fam-
ily given a corpus of cognates, sets of genetically related
words. Finally, we present an imputation procedure which
allows us compare the quality of alignment models, as
well as the goodness of the data sets. Our evaluations
demonstrate that the new model yields improvements in
performance, as compared to those previously reported in
the literature.

1. INTRODUCTION

This paper introduces a family of context-aware models
for alignment and analysis of etymological data on the
level of phonetic features. We focus on discovering the
rules of regular (or recurrent) phonetic correspondence
across languages and determining genetic relations among
a group of languages, based on linguistic data. In this
work, we use the StarLing database of Uralic, [1], based
on [2], restricted to the Finno-Ugric sub-family, consisting
of 1898 cognate sets, as well as Suomen Sanojen Alku-
perä (SSA), “The Origin of Finnish Words,” a Finnish et-
ymological dictionary, [3], which contains over 5000 cog-
nate sets. Elements within a given cognate set are words
posited by the database creators to be derived from a com-
mon origin, a word-form in the ancestral proto-language.

One traditional arrangement of the Uralic languages—
adapted from Encyclopedia Britannica—is shown in Fig-
ure 1; alternative arrangements found in the literature in-
clude moving Mari into a separate branch, or grouping it
with Mordva into a branch, called “Volgaic”.

We aim to find the best alignment at the level of single
sounds. The database itself only contains unaligned sets
of corresponding words, with no notion of which sounds
correspond, i.e., how the sounds align. We learn rules
of phonetic correspondence allowing only the data to de-
termine what rules underly it, using no externally sup-
plied (and possibly biased) prior assumptions or “univer-
sal” principles—e.g., no preference to align vowel with
vowels, a symbol with itself, etc. Therefore, all rules we
find are inherently encoded in the corpus itself.

Uralic tree

Figure 1. Finno-Ugric branch of Uralic language family

The criterion we use to choose a model (class) from
the family we define is the code-length needed to com-
municate the complete (aligned) data. The learned min-
imum description length (MDL) models provide the de-
sired alignments on the sound level, but also the underly-
ing rules of correspondence, which enable us to compress
the data. Apart from looking at the code-length, we also
evaluate our models using an imputation (reconstruction
of held-out data) procedure and by building phylogenies
(family trees). We release the suite of etymological soft-
ware for public use.

Most closely related to this work is our own previous
work, e.g., [4], and work conducted at Berkeley, e.g., [5,
6]. The main improvement over these lies in awareness of
a broader phonetic context of our models. We build deci-
sion trees to capture this context, where irrelevant context
does not increase model complexity.

2. ALIGNING PAIRS OF WORDS

We begin with pairwise alignment: aligning pairs of words,
from two related languages in our corpus of cognates. For
each word pair, the task of alignment means finding ex-
actly which symbols correspond. The simplest form of
such alignment at the symbol level is a pair (σ : τ) ∈
Σ×T , a single symbol σ from the source alphabet Σ with
a symbol τ from the target alphabet T . We denote the
sizes of the alphabets by |Σ| and |T |.

To model insertions and deletions, we augment both

189

alphabets with a special empty symbol—denoted by a dot—
and write the augmented alphabets as Σ. and T.. We can
then align word pairs such as vuosi—al (meaning “year”
in Finnish and Xanty), for example as any of:

v u o s i
| | | | |
a l . . .

v u o s i
| | | | |
. a . l .

etc...

The alignment on the right then consists of the symbol
pairs: (v:.), (u:a), (o:.), (s:l), (i:.).

3. FEATURE-WISE CONTEXT MODELS

Rather than encoding symbols (sounds) as atomic, we code
them in terms of their phonetic features. To this end, the
corpus has been transcribed into feature vectors, where
each sound is represented as a vector of five multinomi-
als, taking on two to eight values, where the first entry
is its type (consonant or vowel) and the remaining four
entries are as listed in Figure 2. We also encode word
boundaries (denoted by #) and dots (deletions/insertions)
as extra types, with no additional features.

Consonant articulation
M Manner plosive, fricative, glide, ...
P Place labial, dental, ..., velar, uvular
X Voiced – , +
S Secondary – , affricate, aspirate, ...

Vowel articulation
V Vertical high—mid—low
H Horizontal front—center—back
R Rounding – , +
L Length 1—5

Figure 2. Phonetic features for consonants and vowels.

We employ the MDL Principle [7] for model class se-
lection and the MDL cost consists of two parts. First, we
encode the model class C, which is determined by a set of
18 decision trees, one for each feature (type plus four con-
sonant and four vowel features) on both levels—source
and target language. These trees query some context at
each inner node, and their leaves provide the distribution
to be used to encode the corresponding feature of a sound.
More precisely the model (class) is allowed to query a
fixed, finite a set of candidate contexts. A context is a
triplet (L,P, F), where L is the level (source or target),
P is a position relative to what we are currently encoding,
and F is one of the possible features found at that position.
An example of allowed candidate positions is given in Fig-
ure 3. In this setup, we have 2 levels × 8 positions × 2–6

Context Positions
I itself, possibly dot

-P previous position, possibly dot
–S previous non-dot symbol
–K previous consonant
–V previous vowel
+S previous or self non-dot symbol
+K previous or self consonant
+V previous or self vowel

... (other contexts possible)

Figure 3. Context positions that a feature tree may query.

features ≈ 80 candidate contexts, one of which defines an
inner node of a feature tree. We can therefore encode each
tree using one bit per node to indicate whether it is a leaf
or not, plus about log 80 bits for each inner node to spec-
ify the context on which it splits. For a model class C, we
need to encode all of its 18 trees in this way, the resulting
total code-length we denote L(C).

The second part of the code-length comes from en-
coding the aligned data using model class C. We encode
the feature in some fixed order, type first for it determines
which other features need to be encoded. For each sound
and each feature, we take a path from the root of the corre-
sponding tree of C to a leaf, following at each inner node
the branch that corresponds to the current context which
is being queried. For example, when encoding feature X
(voicedness) of a symbol σ in the source language we may
arrive at a node given by (L,P, F) = (target,−K,M)
querying the manner of articulation of the previous con-
sonant on the target level. This value (any manner of ar-
ticulation or ’n/a’ if there is no consonant on the target
level between the current position and the beginning of
the word) determines the edge we follow down the tree.

Each path from the root of a tree to a low-entropy leaf
can be interpreted as as rule of phonetic correspondence.
The path describes a contextual condition, the leaf gives
the correspondence itself. High-entropy leaves represent
variation that the model cannot explain.

In this way, all features of all symbols arrive at some
node in the corresponding tree. We encode this data at
each leaf independent of all other leaves using the normal-
ized maximum likelihood (NML) distribution [8]. As the
data at each leaf is multinomial, with cardinality |F |—the
number of values feature F can take on—the correspond-
ing code-length can be computed in linear time [9].

When C = {T L
F } consists of trees T L

F for level L and
feature F , and D is the aligned corpus such that D|L,F,`

is the portion arriving at a leaf ` ∈ T L
F , then the overall

code-length for D using C is

L(D, C) = L(C) +
∑

L

∑

F

∑

`

LNML(D|L,F,`). (1)

As implied, LNML(D|L,F,`) is the multinomial stochas-
tic complexity of the restricted data D|L,F,`. This code-
length is the criterion to be minimized by the learning al-
gorithm.

4. LEARNING

We start with an initial random alignment for each pair of
words in the corpus. We then alternatively re-build the de-
cision trees for all features on source and target levels as
described below, and re-align all word pairs in the corpus
using standard dynamic-programming, an analog proce-
dure to the one described in [4]. Both of these operations
decrease code-length. We continue until we reach conver-
gence.

Given a complete alignment of the data, for each level
L and feature F we need to build a decision tree. We

190

want to minimize the MDL criterion (1), the overall code-
length. We do so in a greedy fashion by iteratively split-
ting the level-feature restricted data D|L,F according to
the cost-optimal decision (context to split upon). We start
out by storing D|L,F at the root node of the tree, e.g., for
the voicedness feature X in Estonian (aligned to Finnish)
we store data with counts:

+ 801
- 821

In this example, there are 1622 occurrences of Estonian
consonants in the data, 801 of which are voiced. The best
split the algorithm found was on (Source, I, X), resulting
in three new children. The data now splits according to
this context into three subsets with counts:

+
+ 615
- 2

-
+ 135
- 764

n/a
+ 51
- 55

For each of these new nodes we split further, until no fur-
ther drop in total code-length can be achieved. A split
costs about log 80 plus the number of decision branches in
bits, the achieved gain is the drop in the sum of stochastic
complexities at the leaves obtained by splitting the data.

5. EVALUATION

We present two views on evaluation: a strict view and an
intuitive view. From a strictly information-theoretic point
of view, a sufficient condition to claim that model (class)
M1 is better thanM2, is thatM1 yields better compression
of the data. Figure 4 shows the absolute costs (in bits) for

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000

se
pa

ra
te

-n
or

m
al

-p
re

qu
en

tia
l

CB + kinds prequential

1x1 Compare costs

est
fin

khn_dn
kom_s
man_p
mar_kb
mrd_e
saa_n
udm_s

unk

Figure 4. Comparison of code-lengths achieved by con-
text model (Y-axis) and 1-1 baseline model (X-axis).

all language pairs1. The context model always has lower
cost than the 1-1 baseline presented in [4]. In figure 5,
we compare the context model against standard data com-
pressors, Gzip and Bzip, as well as models from [4], tested
on over 3200 Finnish-Estonian word pairs from SSA [3].
Gzip and Bzip need not encode any alignment, but neither
can they exploit correspondence of sounds. These com-

1The labels appearing in the figures for the 10 Uralic lan-
guages used in the experiments are: est=Estonian, fin=Finnish,
khn=Khanty, kom=Komi, man=Mansi, mar=Mari, mrd=Mordva,
saa=Saami, udm=Udmurt, unk/ugr=Hungarian.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 500 1000 1500 2000 2500 3000 3500

C
om

pr
es

se
d

si
ze

 x
10

00
 b

its

Data size: number of word pairs (average word-length: 5.5 bytes)

Gzip
Bzip2

1-1 model
2-2 model

Context model

Figure 5. Comparison of compression power

parisons confirm that the new model finds more regularity
in the data than the baseline model does, or an off-the-
shelf data compressor, which has no knowledge that the
words in the data are etymologically related.

For a more intuitive evaluation of the improvement in
the model quality, we can compare the models by using
them to impute unseen data. For a given model, and a lan-
guage pair (L1, L2)—e.g., (Finnish, Estonian)—hold out
one word pair, and train the model on the remaining data.
Then show the model the hidden Finnish word and let it
impute (i.e., guess) the corresponding Estonian. Imputa-
tion can be done for all models with a simple dynamic
programming algorithm, very similar to the one used in
the learning phase. Formally, given the hidden Finnish
string, the imputation procedure selects from all possible
Estonian strings the most probable Estonian string, given
the model. Finally, we compute an edit distance (e.g., the
Levenshtein distance) between the imputed string and the
correct withheld Estonian word. We repeat this procedure
for all word pairs in the (L1, L2) data set, sum the edit dis-
tances, and normalize by the total size (number of sounds)
of the correct L2 data—giving the Normalized Edit Dis-
tance: NED(L2|L1,M) from L1 to L2, under modelM .

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.2 0.3 0.4 0.5 0.6 0.7

se
pa

ra
te

-n
or

m
al

-p
re

qu
en

tia
l

CB + kinds prequential

NFED

est
fin

khn
kom
man
mar
mrd
saa

udm
unk

Figure 6. Comparison of NED of context model (Y-axis)
and “two-part 1-1” model (X-axis).

191

The NED indicates how much regularity the model has
captured. We use NED to compare models across all lan-
guages, Figure 6 compares the context model to the “two-
part 1-1” model from [4]. Each of the 10 · 9 points is a
directed comparison of the two models: the source lan-
guage is indicated in the legend, and the target language is
identified by the other endpoint of the segment on which
the point lies. The further away a point is from the di-
agonal, the greater the advantage of one model over the
other.

The context model always has lower cost than the base-
line, and lower NED in 88% of the language pairs. This is
an encouraging indication that optimizing the code length
is a good approach—the models do not optimize NED di-
rectly, and yet the cost correlates with NED, which is a
simple and intuitive measure of model quality.

A similar use of imputation was presented in [5] as
a kind of cross-validation. However, the novel, normal-
ized NED measure we introduce here provides yet an-
other inter-language distance measure (similarly to how
NCD was used in [4]). The NED (distances) can be used
to make inferences about how far the languages are from
each other, via algorithms for drawing phylogenetic trees.
The pairwise NED scores were fed into the NeighborJoin
algorithm, to produce the phylogeny shown in Fig. 7.

Figure 7. Finno-Ugric tree induced by imputation and nor-
malized edit distances (via NeighborJoin)

To compare how far this is from a “gold-standard”,
we can use, for example, a distance measure for unrooted,
leaf-labeled (URLL) trees found in [10]. The URLL dis-
tance between this tree and the tree shown in Fig. 1 is 0.12,
which is quite small. Comparison with a tree in which
Mari is not coupled with either Mordva or Permic—which
is currently favored in the literature on Uralic linguistics—
makes it a perfect match.

6. DISCUSSION AND FUTURE WORK

We have presented a feature-based context-aware MDL
alignment method and compared it against earlier models,
both in terms of compression cost and imputation power.
Language distances induced by imputation allow building
of phylogenies. The algorithm takes only an etymological

data set as input, and requires no further assumptions. In
this regard, it is as objective as possible, given the data
(the data set itself, of course, may be highly subjective).

To our knowledge, this work represents a first attempt
to capture longer-range context in etymological modeling,
where prior work admitted minimum surrounding context
for conditioning the edit rules or correspondences.

Acknowledgments
This research was supported by the Uralink Project of the
Academy of Finland, and by the National Centre of Excel-
lence “Algorithmic Data Analysis (ALGODAN)” of the
Academy of Finland. Suvi Hiltunen implemented earlier
versions of the models.

7. REFERENCES

[1] Sergei A. Starostin, “Tower of Babel: Etymological
databases,” http://newstar.rinet.ru/, 2005.

[2] Károly Rédei, Uralisches etymologisches Wörter-
buch, Harrassowitz, Wiesbaden, 1988–1991.

[3] Erkki Itkonen and Ulla-Maija Kulonen, Suomen
Sanojen Alkuperä (The Origin of Finnish Words),
Suomalaisen Kirjallisuuden Seura, Helsinki, Fin-
land, 2000.

[4] Hannes Wettig, Suvi Hiltunen, and Roman Yangar-
ber, “MDL-based Models for Alignment of Ety-
mological Data,” in Proceedings of RANLP: the
8th Conference on Recent Advances in Natural Lan-
guage Processing, Hissar, Bulgaria, 2011.

[5] Alexandre Bouchard-Côté, Percy Liang, Thomas
Griffiths, and Dan Klein, “A probabilistic approach
to diachronic phonology,” in Proceedings of the
2007 Joint Conference on Empirical Methods in Nat-
ural Language Processing and Computational Nat-
ural Language Learning (EMNLP-CoNLL), Prague,
June 2007, pp. 887–896.

[6] David Hall and Dan Klein, “Large-scale cognate re-
covery,” in Empirical Methods in Natural Language
Processing (EMNLP), 2011.

[7] Peter Grünwald, The Minimum Description Length
Principle, MIT Press, 2007.

[8] Jorma Rissanen, “Fisher information and stochas-
tic complexity,” IEEE Transactions on Information
Theory, vol. 42, no. 1, pp. 40–47, January 1996.

[9] Petri Kontkanen and Petri Myllymäki, “A linear-
time algorithm for computing the multinomial
stochastic complexity,” Information Processing Let-
ters, vol. 103, no. 6, pp. 227–233, 2007.

[10] D.F. Robinson and L.R. Foulds, “Comparison of
phylogenetic trees,” Math. Biosci., vol. 53, pp. 131–
147, 1981.

192

