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1 Introduction

Computational etymology utilizes computational methods to study the relations of
languages and origins of words. Typical research areas are identification of words
that are from same origin, determination of genetic relations of languages and re-
construction of their ancestral forms. The distances of related languages can be
quantified and used to model their evolutionary history. The guideline these meth-
ods use is the assumption of the regularity of sound change. This means that when
the languages evolve, the phonemes of words undergo changes that depend on the
structure of the words. Sometimes it concerns all the instances of the sound in a
language, sometimes it can be environmentally conditioned, in which case it only
occurs in a certain context. The discovery of these regular sound correspondences
across languages is one fascinating task in which the computational method are
useful.

If we are given a set of etymological data, how can we induct rules of regular sound
correspondences? The problem can be seen as a task of finding an optimal alignment
between the words from same origin. If we align two word forms from very closely
related languages, there are probably very little replacements of sounds or gaps in
the alignment. The longer time from the divergence of the languages, the harder
it is to see the steps of language evolution in alignments without any additional
information. Another way to say this: the closer the languages are to each other, the
more consistent are the data sets and the more regularity there is in the alignments.

Theminimum description length (MDL) principle is a method for inductive inference
that is based on an idea that any regularity in the data can be used to compress the
data [GMP05]. MDL gives a solution to the model selection problem, the best model
is the one that can compress the most. If the data can be compressed, there exists
some kind of a description method that can be used to uniquely describe the data in
a short manner. The determination of the description method is a topic studied in
information theory. There the objective is to find a code that is restrictive enough
to be computable, but also general enough to be able to compress the regularity in
the data.

The goal of this thesis is to present MDL-based models for alignment of etymological
data. We apply several coding approaches and measure their ability to compress,
since the compressed size of the data can be seen as the model cost. According to
MDL, learning is compression, thus we try to find models that minimize the cost.
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If a model is fixed, the model cost can be used to compare the quality of different
data sets and to give a measure to group the relationships within a language family.

The key research question is to discover what kind of rules of correspondences it
is possible to automatically discover from etymological data. We have developed
models of different complexity to capture these rules: the models are used to find
the best alignment at the symbol or sound level for etymologically related words
of the given languages. The models are designed to be as general and objective as
possible: the methods are developed to rely only on the data and to learn from data
automatically in an unsupervised way. In the analysis, we use etymological data from
Uralic language family, but the methods could be generalized to any group of related
languages. The methods described in this thesis are based on the research done in
the UraLink project that studies genetic relationships among the Uralic language
family. My own contribution to the research is mainly on the implementation and
design of the context-based models and their evaluation methods.

The structure of this thesis is as follows. In section 2 is presented prior work done in
related application areas. The etymological data is introduced in section 3. The most
important part of this thesis is in section 4, where the novel information theoretic
models in computational etymology are defined and explained. In the next section 5
the evaluation methods used to compare the goodness of the models are described.
Finally in 6 is discussion about the future work and conclusions.
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2 Related work

All the new methods described in this thesis are based on the research done in
the UraLink project during years 2010-2011. The intermediate results of this work
are also published in several papers [WeY11, WHY11a, WHY11b]. This section
describes the previous work done in the field of computational etymology (section
2.1). The following subsections cover the information theoretic methods that are
utilized in our work. Finally, there are some notions about other application areas
that utilize the minimum description length principle in section 2.5.

2.1 Computational Etymology

Before introducing the state of the art research in computational etymology, some
important linguistic terms used throughout this thesis are first described. The exact
definitions and more information can be found from [Ant89]. Most of the linguistic
concepts described in this section belong to the subject of comparative method, which
is a technique for comparing word forms that originate from a common language, in
order to reconstruct the original ancestor language.

Cognates are words that have common etymological origin. They descend from the
same ancestor language. The cognate words belong to the same language family and
are said to be genetically related. Cognate set is a set of genetically related words
in different languages of the language family. The work described in this thesis is
based on modeling the cognate data.

The term proto-language is used either from a real, extincted language from which
the other languages have descended or from a language which is artificially recon-
structed by using the methods of computational etymology. In this work, the latter
meaning is used, even though that is mainly a subject of future work. Based on the
similarities and differences of corresponding sounds in the cognate sets, the regular
sound correspondences between the related languages are determined. One of our
goals in this work is to try to detect these regularities, by aligning the cognates.
The study of sound change models the changes in the languages over time. Some of
the sound changes are conditioned by the environment, which further complicates
the task of language comparison.

The methods of computational etymology we are interested in are used to model the
sound change and learning of regular sound correspondences. Some work is done
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also in identification of cognates. That’s something we are not aiming to, because
our data sets consist of cognate sets. However, the task of finding cognates is very
closely related to finding regular sound correspondences. That is the reason for the
fact that the methods presented in this section often involve the search of cognates.
The emphasis of the previous work in the field of computational etymology varies
between the following three aspects:

• Finding cognates

• Finding optimal alignments of cognates

• Finding rules of correspondences

Since the goals above are so closely related, learning about one subject helps to
understand the other aspects too.

The complexity of the problem varies depending on the restrictions set for the mod-
els. On one hand, if we are studying regular sound correspondences, the difficulty
can be adjusted by determining how complex sound correspondences can be found.
The easiest task is to look for one-to-one correspondences, while a more complex
task is to extend them to many-to-many correspondences. On the other hand, the
alignment can be done only between two languages, but it is more challenging to
align multiple languages simultaneously.

Early work in the computational discovery of optimal alignments in linguistics is
done by Michael Covington [Cov96]. He is using depth-first search algorithm and a
cost function that is based on phonetic similarities to perform the alignment. The
algorithm can be used only to find one-to-one correspondences and to align two
languages at a time. The emphasis of the work is on finding the best alignments in
phonetic sense. Later Covington has extended his method to handle more than two
languages at once [Cov98].

Grzegorz Kondrak has done a series of papers. His early work [Kon02] is dealing
with pairwise alignments. His purpose is to study regular sound correspondences
and at the same time recognize cognates from data, since the problems are in a
way very related. The first version of his CORDI algorithm works only with one-
to-one sound correspondences. Later Kondrak extends his algorithm to recognize
more complex sound correspondences [Kon03, Kon04]. Later papers by Kondrak
are more survey-like [Kon09]. He has written also a review of different alignment
methods that are based on phonetic similarities [KoS06]. Kondrak’s work is based on
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methods developed by Dan Melamed [Mel97, Mel00], who has worked on translation
models. However, Kondrak has adopted Melamed’s ideas in finding many-to-many
sound correspondences and is using them in his algorithm.

Oakes [Oak00] has studied many aspects of comparative method, he aims at recon-
struction of proto-languages. He is utilizing phonetic features, dynamic program-
ming and determines regular sound correspondences in word lists.

Bouchard et al. [BLG07] do both alignments and reconstruction of evolutionary
history of a language family in a probabilistic framework. This paper is closely
related to our work, in various aspects. The probabilistic model they use is a Monte
Carlo EM algorithm to fit the model parameters, which specify the the edits that
govern how the words have evolved. A dynamic programming approach is used to
reconstruct unknown word forms. Finally they evaluate the goodness of the model
by computing the Levenshtein distance from the predicted reconstruction to the
truth.

Bouchard et al. later evaluate their method for reconstruction of ancient word
forms by means of imputation [BGK09]. Prokić et al. [PWN09] is aiming directly
in aligning multiple languages at the same time.

One perspective to the study of the languages is the reconstruction of phylogenetic
trees. We utilize this approach in the evaluation phase. Representative examples of
work on this subject are e.g. [BWR09, NRW05, RWT02].

2.2 Information Theory

Information theory involves quantification of information. From the point of view
of this work, the most important findings of the topic relate to the definition of
fundamental limits of data compression and data communication.

Information theory was developed by Claude E. Shannon [Sha48]. Information can
be understood to mean unexpectedness of events; the more surprise there is, the
more there is information and the higher the probability of an event is, the lower
is the information. More formally, information can be defined in the following way
[Ham86]. Let us have a source alphabet S of symbols s1, s2, . . . , sq, each with prob-
ability p(s1) = p1, p(s2) = p2, . . ., p(sq) = pq,

∑
pi = 1. Then the amount of

information I can be defined as

I(si) = log2
1

pi
(1)
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Entropy measures the expected value of the information contained in a message. A
common measure unit of entropy is a bit. Entropy H is defined as:

H(S) = E(I(S)) =

q∑
i=1

pilog2

(
1

pi

)
(2)

where E is the expected value, I(S) information content of a discrete random vari-
able S (the source alphabet) and p is the probability mass function of S. The entropy
is maximal for an uniform probability distribution, and minimal for an extremely
peaked distribution.

Information theory can also be viewed as a theory of communication over a channel
[CoT91]. In this setting, a sender wants to send information using the channel to
some receiver. The sender wants to encode the data in a way that the receiver is
able to decode it, and also so that the sender has to send as few bits as possible. In
this theoretical approach, the only thing the sender and the receiver have to share
is the understanding of the coding method used and we need not care about noise
and errors that exist in real word communication tasks.

The purpose of source coding is to compress source data as efficiently as possible so
that fewer bits are needed in transferring the complete data, while keeping the the
message completely decodable [CoT91]. Source codes try to reduce redundancies of
the source and to squeeze more information to the bits that carry the information. A
common principle of data compression algorithms is to minimize the average length
of messages according to some particular probability model. The data is encoded
in a way that the more frequent patterns in data have shorter code words than less
frequent ones, cf. equation 2.

A prefix code is a code in which no code word is a prefix of any other code word
[CoT91]. This means that all the code words are immediately recognizable and there
is no need to code the end of a code word separately. Kraft inequality determines
the relationship between code word lengths and existence of prefix codes, as defined
in theorem 2.1. It tells when the lengths of the code words permit forming an prefix
code, but it doesn’t define the code itself. Kraft inequality allows the unification of
codes and probability distributions if we define px = 2−L(x) for binary codes.

Theorem 2.1. (Kraft Inequality) For any countably infinite set of code words x that
form a prefix code, the code word lengths L(x) satisfy the Kraft inequality

∑
x

2−L(x) ≤ 1 (3)
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Conversely, given any code lengths satisfying the Kraft inequality, we can construct
a prefix code.

A prefix code is complete if there does not exist a shorter prefix code. A prefix code
is complete if and only if the left side of the equation 3 is 1. The task of finding the
prefix code with the minimum expected code length is equivalent to finding the set
of lengths L(x) that satisfy the Kraft inequality and whose expected length is less
than for any other prefix code. The result of this optimization problem is that there
exists a lower limit for the compression of the source code, and that is the entropy
of the source code, H(S).

2.3 Kolmogorov Complexity

Kolmogorov complexity is a theoretic measure of information of a data sequence,
defined relative to a given universal Turing Machine. The Kolmogorov complex-
ity of a sequence is the length of the shortest program that prints the sequence
and then halts [Grü07]. A shortest program is a description method that maps
each data sequence D to the shortest program that prints D and then halts. The
lower the Kolmogorov complexity of a sequence, the more regular it is: Kolmogorov
complexity is lower for more predictable sequences and higher for more complex
ones. The theory and concept of Kolmogorov complexity was first discovered by
Ray Solomonoff [Sol64], later also independently published by Andrey Kolmogorov
[Kol65].

Kolmogorov complexity would be ideal to measure the informativeness of a given
string by the size of the algorithm required to regenerate that string. In other words,
it describes how much effort is required to generate the data [LiV94, Juo98].

There are two major problems why it is not possible to utilize the Kolmogorov
complexity in practice. The first problem is that the Kolmogorov complexity cannot
be computed. The second problem is that the description length of a sequence also
involves a possibly large constant that depends on the description method used, i.e.
the universal Turing Machine chosen [Grü07].

The connection between Shannon’s entropy and Kolmogorov complexity is the fact
that the former is an upper bound of the latter. [Juo98]. An intuitive approach to
this non-trivial result is observation that a decompression program and a compressed
file can be used to regenerate the original string.
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There is also a connection between Kolmogorov complexity and the coding of ety-
mological data. Kolmogorov complexity is uncomputable but it can be estimated
for a given file using file compression programs, because a decompression program
and a compressed file can be used to regenerate the original data sequence [LiV94].
This is also the intuition for our coding approach. We use code length to compare
the goodness of our models and also the complexity differences between language
pairs.

In general, the motivation to estimate the Kolmogorov complexity comes from the
fact that if we find models that give us better compression of data,

• the better rules we find to describe the data,

• the better alignment we find for the data,

• the more tools we get to make the alignments more predictable,

and also the Kolmogorov complexity of the data gets lower. This idea was formulated
in [KSL06].

2.4 The MDL Principle

Since Kolmogorov complexity is uncomputable, we need a formalization to approxi-
mate it. The answer is the minimum description length principle (MDL), introduced
by Jorma Rissanen [Ris78]. MDL is based on the fact that any regularity in the
data can be used to compress the data [Grü07]. In the MDL world, learning from
data is data compression.

MDL is a method for inductive inference that gives a solution to the model selection
problem. The model chosen by MDL is the one that leads to the best compression
of the data. MDL is said to quantify Occam’s razor. Where Occam’s razor can only
compare models of equal data fit and choose the simplest of those, MDL can compare
any models of varying complexity and data fit and choose the one with the best
trade-off between the two. Thus MDL automatically protects against overfitting. It
can be used to estimate both the parameters and the structure of the model [Grü07].

The MDL approach gives a solution to the problems of Kolmogorov complexity. In
principle, the idea is to scale down the task so that it becomes applicable [Grü07].
This is achieved by introducing a simple description method that is restrictive
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enough to allow the computation of the length of the description, but is general
enough to allow the compression of sufficiently many regular sequences. Naturally,
the quality of an MDL method largely depends on the choice of this description
method or model class. Any MDL model can be seen as an approximating Kol-
mogorov Complexity by replacing the universal Turing Machine with a model class
suitable for the task at hand. This model class then is no longer universal, but
instead it is efficiently computable.

Two-part code is the earliest and simplest implementation of MDL, and also the
approach we adopt. In two-part coding, the best model M ∈ M is the one which
minimizes the sum L(M) + L(D|M), where

• L(M) is the description length of the model, length in bits.

• L(D|M) is the length of the description of the data that is encoded using the
model, length in bits.

2.5 Applications of MDL Principle

In the field of natural language processing, the minimum description length (MDL)
approach has been utilized in many research areas, e.g. part of speech tagging
[RaK09], morphological analysis [WHY10, CrL02, Gol01], induction of grammars
[AdJ06] and stemmatology [RHM06].

A particularly good example of applying the MDL principle, including prequential
coding in a very similar manner as in this work but in a quite different application
area, is our earlier work on induction of morphological structure of natural language
[WHY10].

To the author’s knowledge, MDL has not been utilized earlier in alignment of lin-
guistic data. In other fields however this idea has been previously applied. For
instance, in bioinformatics, sequence alignment has been done in information theo-
retic framework [Con07].
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3 Etymological Data

Traditionally all etymological research is manually done by linguists. The results of
the research are collected to handbooks of historical linguistics [Lyt73, Sin97], which
contain rules and facts about the languages of interest and they provide a handful
of examples of form x corresponds to y. However, these rules are not exact in a
sense that they do not always specify all the exceptions, all precise conditions under
which the rule holds and to what extend the rule is applicable.

As a summary, there are several problems in the historical databases that must be
considered. First of all, they are lacking a quantitative measure of goodness for the
rules. Because there has been a large amount of human interpretation involved in
the creation of these databases, there is also unquantified amount of uncertainty
involved. Typically different databases even conflict with each other.

3.1 Data

Our data is cognate data from Uralic language family, which has not been studied
by computational means previously. The Uralic language tree is shown in figure 1.
The tree illustrates the relations and distances of the languages in family. The more
distant the languages are, the longer the time is they have evolved from the common
ancestor language.

We have two Uralic etymological data sources in digital form. The first data re-
source is extracted from SSA—Suomen Sanojen Alkuperä (“The Origin of Finnish
Words“) [Itk00]. As the name implies, the dictionary is concentrated on the Finnish
vocabulary and on the origins of Finnish words. SSA has more than 5000 Finnish
entries, and for the related languages the number of entries varies mostly inversely
proportionally to the distance of the language from Finnish. In the SSA, words are
in so called dictionary form, meaning that they contain also morphological affixes,
which are not relevant to reconstruction of genetic relations of languages.

The second and more important data resource for this project is StarLing Database of
Uralic Languages by Russian Academy of Sciences [Sta05], which is originally based
on [Réd91]. Table 1 gives an insight to the actual StarLing data, there is shown
two cognate sets to demonstrate the properties of the cognate sets. StarLing differs
from SSA in several respects. The StarLing data is more suitable for reconstruction
purposes because it gives a stemmed or lemmatized form for most of the cognate



11

Fin-Ugr

Ob’

Volga

Baltic

Hungarian

Hanty

Mansi

Finnish

Komi

Udmurt

Estonian

Saami
Mari

Mordva

Perm’

Uralic

Samoyed

. . .

Figure 1: The Finno-Ugric branch of Uralic language family, according to [Ant89].

sets and it tries to normalize the words to the common base form. The data is more
evenly distributed than SSA and it also contains cognate sets that do not have a
Finnish member. The number of cognate sets in StarLing is about 2000. In figure
2 is illustrated how the amount of data is distributed among languages in both
StarLing and SSA. The StarLing data set can be further preprocessed and the main
dialects of each language (if any) can be extracted. This step improves the quality
of the data but the flip side is the diminishing sizes of the cognate sets.

The language data in both databases is written using Finno-Ugric transcription sys-
tem which is a phonetic transcription used for the transcription and reconstruction
of Uralic languages. Transcription in linguistics is the systematic representation of
spoken language in written form. It is a tool to consistently represent the sounds
with written symbols. However, some of the languages (e.g. Hungarian and Saamic
languages) use their own transcription systems that differ from the system used by
other languages.
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Language Cognate set 1 Cognate set 2
Estonian kolm ala
Finnish kolme ala
Hungarian három al-
Khanty kOl@m V, Xut@m DN, i

˘
l V, it DN, il O

Xol@m O
Komi kujim S P, kvim PO -ul S, -i

˘
v P, ul PO

Mansi kōr@m TJ, Xūr@m So., jalē
˘
k TJ, jalX KU

kūr@m P jalk P, jolik So.
Mari k“@m KB, kum U B ül- KB B, ülö U
Mordvin kolmo E, kolma M al E M
Saam gǫlbmâ N, kål’må L, vuolle N, -vuollē L, v¯̊ılle T,

kolm T Kld. A, koum Not. vūln Kld., vueln Not.
Udmurt kwiń S, ku̇ń K, kwiń G ul S, ul@

˘
K, ul G

English meaning three space below smth., below

Table 1: Two unrelated cognate sets from StarLing database. Each language entry
contains a form for each dialect of the language, if known. In cognate set 2, the
database gives several word forms with slightly different meaning for most of the
words, here is shown only the first cognate mentioned, since the latter ones are
ignored in our experiments. The dialects are marked with boldface, e.g. Mordvin
language has two main dialects, E and M: E denotes Erzya dialect and M Moksha
dialect.
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Figure 2: The distribution of data in SSA and StarLing. SSA is very Finnish-centric,
whereas StarLing data is more evenly distributed.

3.2 Feature Data

We can get more information out from the data by further analyzing the phonological
structure of the sounds of the languages. The phonological structure of the sounds
can be expressed by converting the phonemes to vectors of phonetic features. The
set of features we use follows the standard classification in phonological theory, for
more information see e.g. [ChH68]. Table 2 gives examples of mappings to feature
space for some phonemes. The table on left shows how the character modifiers are
designed to reflect the phonetic variation. For example, if we simply compare glyphs
e and ē, we can only say that they do not represent the same glyph. In feature space,
the only difference between the glyphs is the length of the vowel. The table on right
gives feature representations for some common consonants in the language family.
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e ē ē
˘

@

TYPE V V V V
VERTICAL c c c c
HORIZONTAL F F M F
ROUNDING n n n n
LENGTH 3 5 5 1

k p r
TYPE C C C
MANNER P P T
PLACE v b d
VOICED - - +
SECONDARY n n n
LENGTH 1 1 1

Table 2: Feature vectors for some sounds. Table 3 gives the meaning for the feature
values. E.g. sound e has a feature vector VcFn3 that states that it is a vowel, it is
mid-close and front and not rounded and it is mid-length.

All features and their possible values are shown in table 3. As summarized in the
table, there are 4 features that can be used to describe any vowel, and 5 features for
any consonant. The TYPE feature is special because it is not a phonetic feature. It
is needed since we are not coding the words but the alignments, and we need a way
to represent word boundaries and alignments with empty symbols, as explained in
section 4. The features are always in the same order, which is the order shown in
table 3. TYPE feature is in the first position, and it determines the features in the
remaining positions.

As a result, in each language, all symbols of the corresponding alphabet will have an
unique feature vector representation. Because of practical implementation related
reasons, the conversion to feature space is done so that there must be a bijective
function between each sound and the corresponding feature vector representation.
Because of this requirement, the alphabet of a language has to be simplified to
meet this condition in some cases, due to the too limited feature space. Mostly,
the overlapping sounds occur only once or twice in the data and often seem to be
inconsistencies in the data.
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Feature name Values

Sound type TYPE Consonant (C), Vowel (V), Dot (·),
Word boundary (#)

Consonant
articulation

MANNER Plosive (P), Nasal (N), Lateral (L),
Trill (T), Fricative (F), Sibilant (S),
Semi-vowel (W), Affricate (A)

PLACE Bilabial (b), Labiodental (l), Dental (d),
Retroflex (r), Velar (v), Uvular (u)

VOICED Yes (+), No (-)
SECONDARY None (n), Palatalized (’),

Labialized (w), Aspirated (h)
LENGTH Short (1), Long(2)

Vowel
articulation

VERTICAL High (h), Mid-close (c)
Mid-open (o), Low(l)

HORIZONTAL Front (F), Medium (M), Back (B)
ROUNDED Yes (u), No (n)
LENGTH Reduced (1), Very short (2), Short (3),

Half-long (4), Long (5)

Table 3: Phonetic features and their values.
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4 MDL-based Models for Alignment of Etymologi-

cal Data

The goal of this work is to understand what kind of etymological phenomena may be
discovered automatically from raw data. This involves finding the globally optimal
alignment for the complete data: the task is to discover the complete alignment
system with rules of regular sound correspondence. The concept of alignment is
formally explained in section 4.1.

According to the Minimum Description Length principle which is defined in chapter
2.4, the best alignment is the one that can be encoded using as few bits as possible.
The length of the code is our objective function and it is the way to define how
to measure the quality of any given alignments. We use prequential coding to form
the objective. More about prequential coding in section 4.2. Different models have
different objectives, but they are all based on prequential coding.

The next step is to define the models we use. The baseline model is derived using
some initial simplifications. First simplification is that we do only pairwise align-
ments for two languages at a time. Second simplification in the baseline model is the
1x1 alignment where one source symbol may correspond only to one target symbol.
Baseline model and the outline of the algorithm is explained in section 4.3.

The baseline model is followed by more complex models where these constraints
are relaxed. Instead of pairwise alignments, it is possible to do a multi-dimensional
alignment, where more than two languages are aligned at a time. Another way
to extend the baseline model is align two languages at a time, but perform a 2x2

alignment, where up to two symbols are aligned at the same time. The modifications
to the baseline model are described in sections 4.5 and 4.6. The third extension to
the baseline model is the context which defines how the environment conditions the
alignments. More about context model is in section 4.7.

4.1 Aligning Pairs of Words

In a pairwise alignment a set of pairs of words from two related languages are aligned.
The simplest form of an alignment means determining for each pair of words which
symbols correspond to each other. We call the first language of the alignment pair
source language and the second one target language. More formally, we denote an
alignment at the symbol level with a pair (s : t) ∈ S × T where s is a single symbol
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from the source alphabet S and t is a symbol of target alphabet T . Respectively, the
sizes of the alphabets are |S| and |T |, and the alphabets consist of the sounds of the
corresponding languages.

We can further define a source word s and a target word t. Both source and target
words are then vectors of symbols of the corresponding alphabet. When we allow
only pairwise symbol alignments, we restrict the source word and target word to the
equal length where |s| = |t|. This is obviously too restrictive definition. Thus, we
also need to allow insertions and deletions. For this purpose, we add and empty
symbol, denoted by a dot, to both alphabets. The extended alphabets are called S.
and T..

4.1.1 1x1 Symbol Alignment

Using the extended alphabets, it is now possible to align pairs of words of different
length. An example case illustrated here is between the cognates kaikki - kõik,
meaning ”all“ in Finnish and Estonian. The following alignments are both possible
and without any further information, they seem both correct. The alignment on the
left below consists of the pairs of symbols: (k:k), (a:õ), (i:i), (k:k), (k:.), (i:.).

k a i k k i k a . i k k i

| | | | | | | | | | | | |
k õ i k . . k . õ i k . .

Since there always exist many possible alignments for a word pair, we need a strategy
for determining the quality of the alignments. In the example above it means that
we need a consistent way to tell which of the two alignments shown is better.

Generally speaking, the best alignment refers to the globally optimal alignment.
This involves finding as many as possible regular sound correspondences among all
the aligned pairs in the data.

The complete alignment can be described with the help of global count matrix G,
which stores the number of times each symbol pair was aligned in the complete
corpus. In figure 3 is illustrated an abstract level count matrix. The rows of the
matrix correspond to the source symbols from source alphabet, columns to the target
symbols. We also introduce a new symbol # to denote the word boundaries. In each
cell of the matrix is the count c of each symbol pair in data, that is G(si, tj) = c(si :

tj). The impossible alignments are marked with symbol -. Special alignment (.:.) is
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. t1 t2 ... tk ... t|T | #

. - c(. : tk) -
s1 c(s1 : .) c(s1 : t1) -
s2 -
... -
sk c(sk : t2) c(sk : tk) -
... -
s|S| c(s|S| : t|T |) -

# - - - - - - - n

Figure 3: Global count matrix stores in each cell the count of corresponding symbol
pair alignments.

never allowed and since we use the word boundary symbol only at the end of each
word, and a word boundary symbol can only be aligned with another word boundary
symbol, the count of (# : #) alignments is n, the number of word pairs in data.

4.1.2 2x2 Symbol Alignment

We can extend the 1x1 symbol alignment to allow alignment of maximum two sym-
bols on both source and target side. For this purpose, we have to introduce two new
symbols, ˆ to denote a beginning of a word and $ to symbolize the end of a word.
If single source symbols s, s′ ∈ S. and target symbols t, t′ ∈ T., the set of possible
symbol alignments becomes the following:

(ˆ : ˆ), (ˆ : ˆt), (ˆs : ˆ), (ˆs : ˆt),

(. : t), (s : .), (ss′ : .), (. : tt′),

(s : t), (ss′ : t), (s : tt′), (ss′ : tt′),

($ : $), ($ : t$), (s$ : $), (s$ : t$)

The symbols that denote the end and the beginning of a word, behave differently
from the phonetic symbols, since they can only be aligned with themselves or with
a symbol pair containing them. An alignment between Finnish-Estonian word pair
nuoli-nool (English meaning is ”arrow”) represents the 2x2 symbol alignment in prac-
tice. The example shows us some typical properties of the two languages: symbol
pair (ˆn, ˆn) shows that word-initial n occurs with another word initial n in both
languages, (uo, oo) that diphthongs may align with long vowels and (i$, $) that word
final vowel in Finnish may disappear.
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ˆn uo l i$

| | | |
ˆn oo l $

Another example word pair odotta-odota, “to wait“ in English“, shows how a geminate
consonant tt in Finnish becomes a single consonant t in Estonian:

ˆo d o tt a$

| | | | |
ˆo d o t a$

4.1.3 3-Dimensional Alignment

In principle, the 1-to-1 model can be extended to any number of languages. The
previously introduce models align data in 2-dimensions. Here we involve the third
dimension for the 1-to-1 model. A 3-dimensional alignment is a triplet (s : t : v) ∈
S.×T.×V., where S, T and V are alphabets of the language family. An example of 3-
dimensional alignment between Finnish-Estonian-Mordvin cognate triplet yhdeksän-
üheksa-veXksa (meaning ”nine” in English) is the following:

y . h d e k s ä n

| | | | | | | | |
ü . h . e k s a .

| | | | | | | | |
v e χ . . k s a .

Like the previous example shows, we are looking for 1-to-1 sound correspondences.
Again the special alignment (. : . : .) is not allowed, but it is possible to align a dot in
two of the languages simultaneously. In 3-dimensional alignment, we accept as input
data all the cognate sets where words from at least two languages are present. In this
way, the previous example was complete: all 3 word forms are present whereas the
following example is incomplete, since the word from the second language is missing.
The languages in the next example are again Finnish, Estonian and Mordvin, the



20

meaning is “ghost”:
h a a m u

| | | | |
− − − − −
| | | | |
č . a m a

We use marginal approach to build the global count matrix for the complete align-
ment of the data. This means that we need three marginal 2-dimensional matrices
to store the all the pairwise alignments. These count matrices are called GST , GSV

and GTV . In case of an incomplete example, we need only one marginal matrix to
save an alignment count, exactly like in 2D-case, e.g. c(s : − : v) = GSV (s, v). In
case of a complete example, all 3 marginal matrices need to be updated. When
defined like this, the count of a complete example becomes c(s : t : v) =

GST (s : t) + GSV (s : v) + GTV (t : v). Since each symbol is now coded twice, the
counts are not comparable to the two-dimensional models.

4.2 Prequential Coding

This far we have defined our data corpus of n word pairs: D = (s1, t1), . . . , (sn, tn).
We follow the Minimum Description Length principle (MDL) and want to encode
all aligned symbol pairs as compactly as possible to find the globally optimal align-
ments. We use prequential coding [Daw84] to code the complete data. The prequen-
tial interpretation of MDL selects the model that has the best predictive performance
when sequentially predicting unseen data [GMP05]. The same coding scheme can
also be derived using Bayesian marginal likelihood [KMT96].

We start by choosing an alignment of each word pair, (si, ti), where i = 1, . . . , n.
We use these word pairs to transmit the sequence of pairwise symbol alignments,
alignment events, from a sender to a receiver. An event ε is a pair of symbols (s : t),
in the event space E :

E = S. × T. ∪ {(# : #)} \ {(. : .)} (4)

The use of word boundary symbol # can now be explained; we need it in order for
the code to be uniquely decodable since it separates the words from each other.

The coding process can be illustrated with a prequential “coding game”. In the
coding game, there are two participants, sender and receiver. The sender has a
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mission to communicate a set of data to the receiver. In this game, both sides know
the data structure beforehand, in our case, the alphabets. The data itself, however,
needs to be communicated explicitly.

Let’s say there are N different event types ei ∈ E, with corresponding counts
[c1, c2, ..., cN ], where E ⊆ E is the set of possible event types. In initial, simpli-
fied form of this game, uniform (Dirichlet) priors are used. This means that prior
count αi = 1 is given for each event type ei, where i = 1, . . . , N .

Both sender and receiver keep track of the number of different events sent and
received by updating the counts of different event types and the total count of
all events. This way we actually update a probability distribution as illustrated
in table 4. Initially, the probabilities of all event types are uniformly distributed,
P (ei) = 1/N for all event types ei, like shown on the first row of the table. When
an event is sent, the counts and the probability distribution is updated. The table
4 shows how the probabilities of event types e1, e2 and eN change when different
amounts of data is sent. The last row shows the probabilities after all the events are
sent.

Finally, when all events are communicated, it is possible to compute the total cost
of sending all the events. The probability of sent events can be computed by multi-

P(e1) P(e2) P(eN)

Initial state 1
N

1
N

1
N

After the first event of type e1
2

N+1
1

N+1
1

N+1

After the second event of type e1
3

N+2
1

N+2
1

N+2

After the last event of type e1
c1+1
N+c1

1
N+c1

1
N+c1

After the first event of type e2
c1+1

N+c1+1
2

N+c1+1
1

N+c1+1

After the last event of type e2
c1+1

N+c1+c2

c2+1
N+c1+c2

1
N+c1+c2

When the last event of type eN arrives c1
N+

∑N
1 ci−1

c2
N+

∑N
1 ci−1

cN
N+

∑N
1 ci−1

After the last event of type eN c1+1

N+
∑N

1 ci

c2+1

N+
∑N

1 ci

cN+1

N+
∑K

1 ci

Table 4: This table shows how the probabilities of event types are updated after
they are sent. Each event type has prior probability 1/N .
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plying the probabilities of individual events, as shown below:

P (E) =
c1! · c2! · . . . · cN !

(
∑N

i=1 ci+N−1)!

(N−1)!

(5)

The total cost of sending this message is negative base two logarithm of its proba-
bility. Thus, the total cost of sending the data is:

L(E) = −
N∑
i=1

log ci! + log

( N∑
i=1

ci +N − 1

)
!− log

(
N − 1

)
!

= −
N∑
i=1

log Γ(ci + 1) + log Γ

( N∑
i=1

ci +N

)
− log Γ

(
N
)

= −
N∑
i=1

log Γ
(
ci + αi

)
+

N∑
i=1

log Γ
(
αi
)

+ log Γ

[
N∑
i=1

(
ci + αi

)]
− log Γ

[
N∑
i=1

αi

]
(6)

As seen in equation 6, the factorials can be replaced with gamma function, since
Γ(n) = (n− 1)!, if n ∈ Z+.

4.3 The Baseline Model

The baseline model encodes the aligned word pairs using prequential coding, directly
in a way that is derived in the previous subsection 4.2. The algorithm used to
complete the task consists of few steps. First the entire corpus is aligned randomly.
Then one word pair at a time is aligned so that the cost of coding the complete data
is greedily minimized immediately after each word pair.

The outline of the baseline algorithm is shown in in algorithm 1. The input of the
algorithm 1 is a file that contains pairs of words in source and target languages.
The number of word pairs is a subset of the complete data, since we include only
complete word pairs; both languages must have a cognate. Typically, closely related
languages share more common word forms than more distant languages.

Initially, we align all the given word pairs randomly. Basically this means random
insertion of dots on source and target side, the only restriction is that a dot cannot
be aligned with another dot. The random alignments are created with the help
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Algorithm 1 The Baseline Model
Input: Corpus of n word pairs in source and target languages
Output: Globally optimal alignment of corpus
1: Align all word pairs randomly
2: Register the random alignments to the global count matrix
3: repeat
4: Read in the current alignment of a word pair (sa, ta), a ∈ [1, n].
5: De-register alignment of (sa, ta) from the global count matrix.
6: Using current alignment counts, find the best local alignment for (sa, ta).
7: Re-register the new alignment of (sa, ta) to the global count matrix.
8: until The convergence of cost function

of dynamic programming procedure, where the cost in each step is random (see
subsection 4.3.1 for more details). After all the word pairs are aligned once, the
number of times each event occurs is updated to the global count matrix, that
stores the event counts, as described in subsection 4.1.

There are different strategies to implement the search heuristics to find the globally
optimal alignments. We have implemented greedy search strategy (subsection 4.3.2)
and search using simulated annealing (subsection 4.3.3). Independent from search
heuristics, the general ideas stay the same. Before trying to align a word pair, its
contribution to the global count matrix is subtracted. We use dynamic programming
to find the lowest cost alignment given the current parameter values from the global
count matrix. After the new alignment is found, the counts of each event is added
into the global count matrix so that the impact of new alignment is immediate in
the value of cost function. The alignment steps are repeated until the convergence
in cost using the following formula 7:

Lbase(E) = −
∑
e∈E

log Γ
(
c(e) + α(e)

)
+
∑
e∈E

log Γ
(
α(e)

)
+ log Γ

[∑
e∈E

(
c(e) + α(e)

)]
− log Γ

[∑
e∈E

α(e)

]
(7)

Here c(e) is the number of times event e occurs in a complete alignment of the
corpus, as stored in the global count matrix, and the α(e) are the Dirichlet Priors
of the events. In the baseline model, we use uniform prior, where α(e) = 1 for all
events e.
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4.3.1 Dynamic Programming

The general idea of dynamic programming, which was formulated by Bellman [Bel57],
is to divide the problem into smaller subproblems and finally combine the solutions of
the subproblems to get the solution to the complete problem. In dynamic program-
ming, the subproblems are not independent. Each subproblem is solved only once
and the solution is saved to be used later again to avoid the need of re-computation
[Cor01].

The approach we use to perform the locally optimal alignment of a word pair, is
similar to computing an edit distance between two strings, e.g. Levenshtein edit
distance [Lev66], or the sequence alignment algorithms in genetics, e.g. Needleman-
Wunsch algorithm [NeW70]. When trying to find the optimal alignment, we are
allowed to do three different edit operations, i.e. substitution, insertion or deletion.
Each such operation induces some cost that depends on the current parameter values,
and the optimal alignment is the one for which the sum of the single operation costs
is lowest.

Figure 4 shows a dynamic programming matrix that is used to align a source word
s = [s1, . . . , sn] with a target word t = [t1, . . . , tm]. In this matrix, each cell (si, tj)

corresponds to a partial alignment of words up to symbol i in source word and j in
target word. The matrix is filled from top to bottom and from left to right. The
different alignment possibilities correspond to different paths in the matrix starting
from the upper-left corner and terminating in bottom-right corner.

Each cell of the matrix stores the cost of the most probable path so far, marked
with C(si, tj) in cell (si, tj). From each cell, it is only possible to continue the path

___
___ 0

Figure 4: Dynamic programming matrix for computing the most probable alignment.
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rightward (insertion of target symbol), downward (insertion of source symbol) or
right and down (substitution of source and target symbol). The cost of each path
is zero in the top-left corner, and the cost of the lowest cost path is stored into the
the most bottom-right cell (sn, tm).

In figure 4 is a cell marked with X, where from source word s has been read off i

symbols and j symbols from target word t. The most probable path to cell X is
one of the tree options that gives the lowest cost:

C(si, tj) = min


C(si, tj−1) +L(. : tj)

C(si−1, tj) +L(si : .)

C(si−1, tj−1) +L(si : tj)

(8)

The cost of path C is already computed for each cell up and left from cell (si, tj) by
dynamic programming. For any observed event ε, parameter L(ε) is the cost of the
event. The cost can be computed from the change in the total code length when a
new event ε is adjoined to the complete set of observed events E in count matrix,
like shown in formula 9.

L(ε) = ∆L(ε) = L
(
E ∪ {ε}

)
− L(E) (9)

The tasks of finding the most probable path and the lowest cost path is equal; the
parameter P (ε) which is the probability of an event ε can be expressed in terms
of L(ε). The probability of an event ε of type e can explicitly be computed by
combining equations 7 and 10, like shown in equation 11. In practice, we compute
the most probable path using costs L(ε) instead of probabilities P (ε), due to the
computational advantages.

P (ε) = 2−∆L(ε) =
2−L
(
E∪{ε}

)
2−L(E)

(10)

P (ε) =
c(e) + 1∑

e′

c(e′) + |E|
(11)
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4.3.2 Greedy Search

The first version of our baseline model is using greedy search heuristics for optimiza-
tion of the decreasing cost function. At every phase of the search, the next state
is chosen in a locally optimal way; after aligning a new word pair the parameter
values are updated immediately. The algorithm is based on an assumption that
the locally optimal choices will lead to globally optimal solution. The iterations are
continued until the value of the global cost function is not decreasing any more.
More discussion about greedy algorithms can be found for instance from [Cor01].

The advantage of the greedy search algorithm is its fast convergence. The disadvan-
tage is that it indeed converges very easily to some local minimum. The result is
relatively high total cost and appearance of events with very low counts. Because of
this, we have chosen to use simulated annealing in search to prevent these problems,
and after the convergence, use greedy steps if any are needed.

4.3.3 Simulated Annealing

Simulated annealing [KGV83, Čer85] is a probabilistic optimization method that
is especially useful for approximating the global minimum of a cost function when
there exists several local minima. Simulated annealing emulates a physical process
of cooling a material into a minimum energy configuration [BeT93]. Simulated
annealing is normally used in discrete finite search space. The general idea is that
the cooling process starts from a high temperature; that is causing randomness in
the selection of the following states. The temperature cools down as a function of
time, and at the end of the simulation when the temperature is low, there is less
randomness and the algorithm proceeds as a greedy search procedure. The purpose
of the randomness is to prevent the algorithm to get stuck in some local optimum;
this way it is possible to jump over those states.

Simulated annealing process starts from some initial state, ε0 ∈ E . During each
step, the algorithm moves to the next state, towards the minimum that is searched.
The next state is chosen probabilistically from the set of candidates, which are
neighboring states for the best candidate. That means the locally optimal solution
is not always chosen. More formally, the simulated annealing process can be defined
using the following terms and parameters:

• Cooling schedule is a function T (τ) = α T (τ − 1), where τ is time. T (τ) is
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also called the temperature at time τ .

• The initial temperature T (0) is initially quite high and is problem specific.
We use values T (0) = 50 or T (0) = 100.

• Cooling parameter α ∈ R, where 0 < α ≤ 1. In our experiments, the parame-
ter value is typically 0.99 ≤ α ≤ 0.995.

We use the simulated annealing during the dynamic programming process. Nor-
mally, at each cell of the dynamic programming matrix, the next state is determined
by the most probable path through the matrix that far. In the 1x1 alignment, there
are always 3 possible states (candidate events) to come from, and the candidate
with lowest cost is chosen. In case of a tie, the candidate is chosen randomly. When
we involve the simulated annealing, the candidate selection becomes a probabilistic
process. Let εb be the best possible candidate event with the lowest cost L(εb) and
εi any other possible candidate event with cost L(εi). For each possible event εi,
i 6= b, is computed the following probability at time τ :

P (εi, T (τ)) = exp

[
−1

T (τ)
(L(εi)− L(εb))

]
(12)

Let Prand be a random probability, where 0 ≤ Prand < 1. The next possible state
is chosen randomly from a set of events, in which belong the events εb and all εi
for which P (εi, T (τ)) > Prand. When the temperature T (τ) → 0, the probability
P (εi, T (τ)) → 0 and it is less and less probable that other but the lowest cost
candidate is chosen.

The cooling schedule is updated every time all the word pairs in data are aligned.
The process is repeated until the convergence of the cost function or the temperature
reaches some predefined value, e.g. α = 0.00001.

4.4 Two-Part Code Model

The two-part coding is a more clever way to encode the data, and performing the
search with respect to the two-part code cost function yields lower cost and also
better alignments. The only difference in two-part code model to the baseline model
is the reformulated cost function, the algorithm stays the same.

The nature of the phenomenon of sound change is that the number of changes that
develop from a common ancestor language, is small. This doesn’t mean that sounds
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should always align with themselves, but there should be regularity that leads to a
situation, where only a small proportion of all possible events in E will ever occur.
This should be seen from the data, and we expect the event matrix to be sparse to
reflect this fact.

With the help of two-part code, we have to send information only about the events
that have non-zero counts; events that have actually been observed. Two-part code
consist of two parts: the first part (CB) is the codebook that encodes the parameters
of the models and the second part (E|CB) encodes all the instances of the events
(the data), with the help of the codebook. The two-part code cost function, the
total code length we try to minimize, is shown in formula 13:

Ltpc(E) = Ltpc(CB) + Ltpc(E|CB) (13)

Ltpc(CB) = log(|E|+ 1) + log

(
|E|
|E+|

)
Ltpc(E|CB) = −

∑
e∈E+

log Γ
(
c(e) + 1

)
+ log Γ

[∑
e∈E+

(
c(e) + 1

)]
− log Γ(|E+|)

The cost of the codebook L(CB) tells how many bits are needed to encode the
observed events. The first term log(|E|+ 1) in the codebook is used to measure the
cost of coding the number of non-zero event types. The second term log

( |E|
|E+|

)
is the

cost of specifying which subset E+ ⊂ E of all the possible event types have non-zero
counts. The cost of the second part, L(E|CB), is derived using Bayesian marginal
likelihood. Similarly to the baseline model, we have set all priors α(e) to one.

In addition to the expectation of sparse data, we can also assume that the the
different alignment types behave differently. We can define four different kinds K
of 1x1 symbol alignment, where source symbol s ∈ S and target symbol t ∈ T :

K1x1 =
{

(s : t), (s : .), (. : t), (# : #)
}

(14)

The kinds allow us to encode their occurrences separately in the codebook of the
two-part code. If the assumption about their different behaviour is correct, this
modification results in lower cost. The cost function with reformulated codebook is
shown below:
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Lkinds(E) = Lkinds(CB) + Lkinds(E|CB) (15)

Lkinds(CB) =
∑
k∈K

[
log(Nk + 1) + log

(
Nk

N+
k

)]

Lkinds(E|CB) = −
∑
e∈E

log Γ
(
c(e) + 1

)
+ log Γ

[∑
e∈E

(
c(e) + 1

)]
− log Γ(|E|)

Here Nk is the number of possible event types of kind k ∈ K and N+
k is the corre-

sponding number of such event types actually observed in the alignment; by defini-
tion we get

∑
kNk ≡ |E|.

As already mentioned, we use algorithm 1 also for the two-part code model. Because
the cost function is changed, also the path cost computation is slightly different in
dynamic programming phase. Like in the baseline model, the parameter values P (ε)

for every observed event ε ∈ E are still computed from the change of code length,
like defined in equation 10. If the event type e of kind k is already observed, the
count of the event type c(e) > 0 and we can use the update formula of equation 11.
It is also possible that we observe an event of completely new kind. In this case, it
is more expensive to add this event. The probability of adding a new event of kind
k is then (equation 16):

P (ε) =
1∑

e′

c(e′) + |E|
· |E|∑

e′

c(e′) + |E|+ 1
· N

+
k + 1

Nk −N+
k

(16)

4.5 Multiple Symbol Alignment

The two-part coding is further utilized in multiple symbol alignment. The 2x2 model
that is described in this section, is an extension of the baseline and two-part code
models and it is designed to find correspondences of up to two symbols on both
source and target side. The possible symbol correspondences are then one-to-one,
one-to-two, two-to-one and two-to-two.

Like in 1x1 two-part code model with kinds, we start by introducing a set of possible
kinds. The equation 17 shows the set of all different kinds we have defined. The
source symbols are s, s′ ∈ S, target symbols t, t′ ∈ T , symbol ˆ denotes the beginning
of a word and $ symbolizes the end of a word. We also model deletions and insertions
(a dot on source or target side) with their own kinds.
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K2x2 =


(ˆ : ˆ), (ˆ : ˆt), (ˆs : ˆ), (ˆs : ˆt),

(. : t), (s : .), (ss′ : .), (. : tt′),

(s : t), (ss′ : t), (s : tt′), (ss′ : tt′),

($ : $), ($ : t$), (s$ : $), (s$ : t$)

 (17)

There are now 16 different kinds defined, whereas the number of kinds in the 1x1
model was 4. Also the size of the event space in now larger since for each new kind
there is a certain number of additional event types and instances. However, we can
expect the global count matrix to be very sparse, since only a small proportion of
the two-to-two event types are supposed to occur. The objective function is the
same as in formula 15.

The dynamic programming algorithm in the re-alignment step of algorithm 1 has
to be adjusted, because of two reasons. The first reason is the addition of the word
boundary symbols, the second reason is the grown number of possible ways to move
in the dynamic programming matrix.

Figure 5 shows an example of dynamic programming matrix for Finnish-Estonian
word pair pyörä-pöör. Like shown in equation 17, the both word boundary symbols
(ˆ and $), can only be aligned with a symbol or symbol pair that contains themselves
and that has to be taken into account when looking for the lowest cost path through
the matrix. The border cells that are filled with gray color are now impossible, and
no path can go through them.

Another difference is that to each cell of the dynamic programming matrix leads now
maximum 8 different paths since it is now possible to read off up to two symbols at
a time. The cost of each step is computed as in 1x1 case, using formulas 11 and 16.
In figure 5 are shown the 4 possible ways to align the ends of the given word pair.
Arrow #1 leads to alignment that ends with ä$-r$, arrow #2 to $-r$, arrow #3 to
ä$-$ and arrow #4 to $-$.

The red arrows show the lowest cost path that can be backtracked from the last cell
of the matrix to the beginning. This step is not different from the same task in 1x1
models. The resulting path in figure 5 is:

ˆp yö r ä$

| | | |
ˆp öö r $



31

0

p y ö r ä^
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Figure 5: A dynamic programming matrix in multiple symbols alignment. The
shadowed cells are impossible to enter. There is also shown 4 different ways to enter
the last cell of the matrix.

4.6 3-Dimensional model

All the models described this far align languages pairwise. The learning of 1-to-1
sound correspondences is easy to extend to three dimensions. The differences and
modifications to the two language models are described in this subsection.

The 3-dimensional alignment was described in subsection 4.1. As defined there, we
use marginal approach to keep track of the alignment counts. To be able to get
more data for learning, we accept to the input data all cognate sets that contain
words from at least two of the languages to be aligned. Because of the incomplete
examples, we need to define two different ways to compute the code length of an
alignment. If we have a complete alignment, the cost of an event is computed as the
sum of the pairwise event costs, based on the three marginal count matrices. In case
of an incomplete example, the cost is obtained using the corresponding marginal
matrix only. The cost of 3-dimensional alignment in each case is formulated below:
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L3D(s : t : v) = LST (s : t) + LSV (s : v) + LTV (t : v)

L3D(s : t : −) = LST (s : t)

L3D(s : − : v) = LSV (s : v)

L3D(− : t : v) = LTV (t : v) (18)

The pairwise alignment costs are computed using two-part coding, either using equa-
tion 13 or equation 15.

The algorithm follows the baseline algorithm 1. The dynamic programming phase
is different for complete and incomplete examples. For incomplete examples, we
use the same procedure as in two dimensional case, see section 4.3.1. For complete
examples, the dynamic programming matrix is extended to 3 dimensions. When in
2-dimensional case, the task was to compute the cost of a path into a cell (si, tj) for
each i, j, in 3-D world the same task is extended to find the cost of a path into a
cell (si, tj, vk), where k is the third dimension. The minimum cost path is computed
using the 3-dimensional event costs L3D(s : t : v). The number of possible paths to
each cell grows from 3 to 7 as illustrated in figure 6.

x

ij

k

Figure 6: A part of dynamic programming matrix in three dimensions. Because of
the third dimension k, there are now 4 additional cells on plane k − 1 from which
to move to cell (si, tj, vk), which is marked with X in figure.
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4.7 Context Based Model

Context based model is a two-dimensional model, that takes context, or the environ-
ment of an alignment into account. For one word pair, the awareness of environment
means that cost of an alignment depends on the previous alignment decisions. Dif-
ferently to the previously introduced models, an alignment is not between symbol
pairs, but on the level of individual features of the symbols. The conversion of sym-
bols to the feature space is described in section 3.2. The features are encoded using
decision trees that are used to split the data in the most informative way.

4.7.1 Contexts

More formally, when encoding a single feature f , context is a triplet (L,P ,F [X])

that is some environment of f . Level L is source or target level. Position P is in
relation to the position of f . A list of positions that are possible to query are listed
in table 5, it is only possible to query contexts that are already encoded. Feature F
is one of the features from table 3 and optional attribute X is one of the values of
that feature. A possible context is e.g. (SOURCE, PREVIOUS POSITION, TYPE), that
asks what is the value of the TYPE feature in previous position on source level. That
context has four possible values, the TYPE can be a dot, a vowel, a consonant or a
word boundary. Binary questions use optional attribute X. This kind of query could
be (SOURCE, PREVIOUS POSITION, TYPE V): is the type of the symbol in previous
position on source level a vowel.

The set of possible contexts for a feature f is large. There are 2 levels: source and
target, 8 positions, 10 features and on average 4 feature values for each feature. This
sums up to 160 general queries plus 640 binary queries. The maximum number of
(theoretically) possible contexts is then 800. In practice the number is smaller, since
we do not define redundant contexts, e.g. if the position is PREVIOUS VOWEL, it is
not useful to query the consonant features. Since the features are encoded in fixed
order, the number of contexts also depends on the position of f : it is largest for the
last feature of the target symbol in order and smallest for the first feature of the
source symbol. The summary is that the number of contexts varies from feature to
feature, but it is a fixed, predetermined number.
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Position Description
ITSELF The current position, possibly dot
PREVIOUS POSITION Previous position, possibly dot
PREVIOUS SYMBOL Previous non-dot symbol
PREVIOUS CONSONANT Previous consonant
PREVIOUS VOWEL Previous vowel
CLOSEST SYMBOL Previous or self non-dot symbol
CLOSEST CONSONANT Previous or self non-dot consonant
CLOSEST VOWEL Previous or self non-dot vowel

Table 5: All possible positions for the context model

4.7.2 Decision Trees

The alignments produced by context model are encoded using prequential coding.
We use decision trees in order to determine the cost of coding the feature f . The
theory of decision trees can be studied from textbooks, e.g. [RuN10]. The coding
of decision trees is discussed e.g. in [QuR89, WaP93].

The model consists of total 20 decision trees, since we build one tree for each feature
and for each level. That is 5 consonant feature trees, 4 vowel feature trees and 1
type feature tree, on both levels. We store all the data in these trees, each tree
containing information about the corresponding feature. The goal of tree building is
to learn regularities from the data and consequently reduce the entropy of the data,
to further reduce the cost of coding.

The feature trees are encoded in a fixed order and all the source trees are encoded
before the target trees. Here it is important to notice one main difference to the
context-free models, where the events are coded jointly. Thus those models are
symmetrical with respect to the source and target languages. This is not the case
with the context model, where the cost of coding a feature is conditioned by its
context, and the set of possible contexts is different on source and target levels.

In order to initialize the trees, we need a random alignment, created same way as
in baseline model (see section 4.3). After the initialization, we build the trees, one
by one. The first step is always to build the root node of the feature tree. The root
node contains a count matrix, where we store a distribution over the values of the
feature. In figure 7 a. is shown the root node of HORIZONTAL/TARGET tree: it is a
TARGET level tree for HORIZONTAL vowel feature. The possible values of HORIZONTAL
feature are front (F), medium (M) and back (B). To fill in the count matrix, we
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Horizontal/Target

F M B

602 61 677

Horizontal/Target

F M B

602 61 677

SOURCE, ITSELF, HORIZONTAL

F M B

533 10 62

F

F M B

0 0 0

M

F M B

6 51 565

B

F M B

63 0 50

≠

a. b.

Figure 7: A decision tree for HORIZONTAL feature on TARGET level. The best can-
didate to split the root node is (SOURCE, ITSELF, HORIZONTAL), which gives the
greatest reduction to the entropy of the count matrix in the root node.

count the number of times each value occurs in vowels of the target language. The
data in example is Estonian words that have a Finnish cognate.

The next step is to look for a way to split the root node so that the entropy of the
count matrix is minimized. The set of candidates that can be used for splitting is
any of possible contexts (L,P ,F [X]). The best candidate is always the one that
produces the greatest reduction in the total tree cost. For each candidate, the split
is conditioned on all possible values of F and if needed, on values that indicate non-
matching values, which include word boundaries (#) and wrong feature type ( 6=).
Each of the values results in a new branch diverging from the root node, ending up to
a child node that contains an updated count matrix. Figure 7 b. shows the resulting
tree if the splitting is conditioned on candidate (SOURCE, ITSELF, HORIZONTAL).

The complete tree is built recursively, from top to bottom, the aim is to split all
nodes as long as it improves the total cost. The number of possible candidates
is decreasing down the tree, after a candidate is once used, it cannot be further
utilized on lower levels of the tree. At each node all the remaining candidates are
gone through exhaustively, and the best split is chosen in a greedy manner. The
recursion ends when the total tree cost stops decreasing.

We use two-part coding to compute the total cost of a tree. The first part is the
model cost Ltree(M), that is used to encode the structure of the decision tree. The
cost of a model M is used to encode all the decisions made to build the tree. The
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following model cost function, which is divided in two parts, adds up in every node
of the tree:

Lnode(M) =

1 + log(|Ctxlf | − d) if split

1 if no split
(19)

The explanation is that if we do not split a node, we need 1 bit to encode that
decision. If there is a split, that costs 1 bit to code the decision and log(|Ctxlf | − d)

bits to tell which of the candidates we used to perform the split. Here |Ctxlf | is the
number of candidates of feature f on level l, and d is the depth of the tree, starting
from d = 0 at root node. The model cost of a tree is Ltree(M) =

∑
node Lnode(M).

The second part of the two-part code is the cost of the data given the model,
Ltree(E|M). It consists of the sum of the costs of the count matrices in the leaf
nodes of the tree. The cost of one count matrix can be computed using the pre-
quential formula 7.

4.7.3 Context Based Alignment

We use dynamic programming to find the locally best alignment for a word pair. We
start from random alignments, and build all the trees according to the random data.
In context based alignment, each symbol alignment (si : tj) ∈ S. × T. is represented
feature-wise and each feature is encoded separately. Thus, all feature in si and t

contributes one event into the corresponding tree.

Before performing the re-alignment of a word pair wk using dynamic programming,
we must remove the current contribution of events in wk from the feature trees. At
this step, the structure of the trees remains untouched. Instead, for each feature, we
modify the data distribution in the leaf node in which the event was stored. This
leaf node is determined according to the context of the symbol at hand.

In figure 8 is shown the TYPE/SOURCE tree that is always the first tree in order
to encode, whether si is a dot, a vowel, a consonant or a word boundary symbol.
We start from the root node, then query the context that splits the root node and
continue until a leaf node is reached. In the example of figure 8 the first query is
(SOURCE, PREVIOUS SYMBOL, ROUNDED). For the first symbol s0 in wk, we follow
the edge marked with #, since s0 is preceded only by the word boundary symbol #.
If the source symbol s0 is e.g. a consonant, we look at the box marked with C in the
count matrix of the leaf node, and subtract 1 from the value of C. This procedure is
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Figure 8: A decision tree for the TYPE feature on SOURCE level for Finnish-Hungarian
alignment. At the beginning of a word, the # edge is always chosen, since the
preceding symbol can be nothing but a word boundary.

repeated for all the features of all si and tj in wk.

The next step is the dynamic programming, which proceeds as in the baseline al-
gorithm and is described in section 4.3.1. The cost of adding a symbol alignment
(si : tj) is now computed as a sum of costs of the feature-wise events in (si : tj).
In order to compute the cost of adding a feature-wise event, we have to trace the
leaf nodes in which the events are added. The leaf nodes are found similarly to the
previous example of figure 8. For one feature-wise event, the change in total code
length is cost of adding the event to the leaf node, and it can be computed using
the equation 11. The lowest cost path through the dynamic programming matrix
is the new resulting alignment of wk, and the participating events are updated into
the trees.

Finally, when all the word pairs are re-aligned, the trees are rebuilt. This is the
phase where it is possible to learn new rules, since the structure of the trees may be
changed. The total cost is computed after the rebuilding, and the steps are repeated
until the cost cannot be improved.

4.7.4 Convergence of Context Model

The greedy search procedure (as described in section 4.3.2) does not help the context
based alignment to converge to a globally optimal state. As a consequence, the
simulated annealing approach (section 4.3.3) is adapted, with some modifications.
The standard simulated annealing requires very slow schooling schedule to work with
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the context model. Since the trees have to be rebuilt after every complete alignment
iteration, the execution of the algorithm slows down. The study of context model
is still an ongoing project, and this far we have tried several search variants to
compromise the slow execution times and goodness of the found optimum. The
following variants are all used, they are listed here with their pros and cons:

1. Standard simulated annealing, using cooling parameter α = 0.995. This
variant results in a slow running time, but relatively low global cost. The
learned rules of correspondence often lead to skew alignments, where the cor-
responding symbols of source and target languages do not align directly but
with a shift off up to 3 symbols. This phenomenon does not necessarily make
the rules of correspondence learned any worse, but they do make the evaluation
a challenging task.

2. Pipeline approach, where the initial alignment given for the context model,
is a result of converged two-part code model, and the decision trees are built
based on that. The greedy search strategy is repeated, until the cost cannot
be reduced; typically only for a few iterations. This approach is very fast, but
there is danger, that the optimum found by the context-free model prevents
from finding a better optimum.

3. Zero-depth convergence method combines simulated annealing and the
greedy search. During the simulated annealing, only the root nodes of the
source level trees are built and and target level trees may query only the can-
didates in ITSELF position. After the convergence, all the limitations of tree
building are removed, and the rules are learned using the greedy search strat-
egy. This method leads to straight alignments and relatively low cost, but it
has more limited search space than the plain simulated annealing approach.

4. Infinite-depth convergence limits the number of candidates that can be
used to split the nodes during the simulated annealing phase. The root node
in any tree can be split only by a candidate in some already encoded ITSELF

position. This variant was designed to prevent the skewness of the alignments,
but did not work that well on this task. It is still usable, since it is less
limited than the zero-depth convergence method, and converges faster than
the standard simulated annealing approach.
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5 Experiments and Results

In this chapter is discussion about the experiments we have implemented to evaluate
the capabilities of the presented models. The evaluation task is challenging, mainly
because there is no direct answer to the question of how the words should ideally
align. For that purpose, we would need a gold standard, which would define the
sound changes that actually have happened during the language evolution. If the
gold standard was available, it would be easy to compare the alignments produced by
our models to the expected alignments. This way we could measure the accuracy of
our models exactly. Unfortunately, there exists no gold standard for the Uralic data
we are experimenting. However, there are some indirect ways to do the evaluations,
these methods are described in the following sections.

5.1 Code Length and Compression Rates

The evaluations in this subsection mainly aim to differ the compression power of
our models. This is an indirect way to measure the capabilities of the models to find
regularities from the data. Information theoretic methods to measure linguistic com-
plexity are represented e.g. by Patrick Juola in [Juo98]. In his work, the standard
compression techniques (like Lempel-Ziv algorithm [ZiL77]) are used to compress
language samples to approximate their Kolmogorov complexity and to measure the
amount of information of the full corpora from which the samples originate. The
same test is used also in [KSL06].

The initial step in the evaluation is very simple and fast; a comparison of the code
length of the alignments when different models are used. Since all our methods use
code length as an optimization criteria, it is natural to assume that the better the
model is, the lower is the code length. Of course, it is possible to build a model that
is wasting bits while doing excellent job with alignments, but on the other hand, a
very badly performing model cannot achieve very low code length. In any case, the
performance of the models cannot be judged only by the ranking in a code length
comparison. The purpose of the code length comparison is mainly to:

1. Compare the compression power of our different models to help us to select
the best model from a set of different model variants.

2. Detect possible problems with the search heuristics (e.g. if a very restricted
model finds lower optimum than more loosely restricted).
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Baseline model 1x1 model 2x2 model Context model
est-fin 40658.47 21691.78 19701.03 18952.91
est-khn 15817.35 11123.26 10507.24 10234.46
est-kom 17326.66 11824.50 11005.27 10727.84
est-man 14421.26 10390.48 9896.18 9633.99
est-mar 16944.73 11590.45 10920.71 11062.66
est-mrd 23142.90 15124.70 14246.11 13872.66
est-saa 21015.98 14116.95 12721.54 12799.43
est-udm 15705.50 10955.40 10203.54 10053.56
est-ugr 12776.70 9219.29 8605.15 8709.49

Table 6: Estonian data is aligned with 9 other Finno-Ugric languages using four dif-
ferent models. The data sets are cognate sets from the StarLing database. For each
language pair, the lowest code length (in bits) is marked with boldface font. Notice
that the code lengths are not normalized here and the costs are not comparable
row-wise.

3. Compare the differences in code length for different language pairs. In order to
do that properly, the inter-language distances need to be normalized. This is
done in section 5.2. Normalization is needed because there is varying amount
of data for different language pairs. Typically, the closer relationship the
language pair has, the more data they have in common.

In table 6 is compared different models using the code length of certain language
pairs. The context model has the best compression power for most of the language
pairs. Baseline model, which is using the simple prequential coding, performs very
badly in this comparison. 1x1 model is using two-part code, and those results are
already comparable to the more sophisticated 2x2 model and context model.

In figure 9, the compression power of the models is compared against standard com-
pression applications, gzip and bzip2. Gzip is a lossless data compression algorithm
which is based on Lempel-Ziv algorithm [ZiL77] and Huffman coding [Huf52]. Bzip2
is a more efficient compression algorithm that is using Burrows-Wheeler transform
[BuW94]. Both of these algorithms are general purpose algorithms, and there cer-
tainly exist more efficient compressors. However, this illustration gives an interesting
view to the compression capability of our algorithms in this specific task. Learning
about the vertical correspondences helps our models to achieve better compression
rates. The data is from SSA data set and the biggest data sample contains over 3000
Finnish-Estonian word pairs. The data samples are given to the compressors in files
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Figure 9: A comparison on compression power of gzip, bzip2, 1x1 model, 2x2 model
and context model. The compression power increases in this order. The data samples
are Finnish-Estonian word pairs from SSA database.

in which there is one word per line. After the data is processed by the algorithms,
the compressed file size is checked. We get the compression power of our methods
directly from the code length computed during the execution of those algorithms.

5.2 Language Distances

One of our goals is to determine the etymological relationships of the Finno-Ugric
languages. This is a step towards reconstruction of the proto-forms of the extincted
languages of the language family. We can use our models to measure inter-language
distances. The first step in this task is to align all language pairs in StarLing data
set. Since we have 10 languages, we get the code length for 100 language pairs.

Since the language distances are not directly comparable, they have to be normal-
ized. For measuring the similarity between languages, we can use Cilibrasi and
Vitanyi’s method [CiV05] to compute the normalized compression distance, NCD.
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fin khn kom man mar mrd saa udm ugr
est 0.37 0.75 0.70 0.74 0.71 0.69 0.49 0.70 0.66
fin 0.74 0.72 0.76 0.70 0.67 0.43 0.693 0.67
khn 0.73 0.70 0.69 0.70 0.62 0.68 0.75
kom 0.78 0.68 0.62 0.55 0.50 0.70
man 0.72 0.63 0.61 0.76 0.76
mar 0.59 0.48 0.70 0.59
mrd 0.48 0.60 0.62
saa 0.53 0.56
udm 0.70

Table 7: Pairwise normalized compression distances for Finno-Ugric sub-family of
Uralic, in StarLing data.

This similarity metric can be used in all application areas and it is independent
from the type of compressor used. The underlying idea is again that the sizes of
compressed files can be used to approximate their Kolmogorov Complexity [LiV94].

The normalized compression distance δ(a, b) is defined between languages a and b

as follows:
δ(a, b) =

C(a, b)−min(C(a, a), C(b, b))

max(C(a, a), C(b, b))
(20)

where 0 < δ < 1 and C(a, b) is the compression cost between the two languages.
Cost C(a, a) is for a monolingual alignment; a language aligned with itself. Ac-
cording to the equation, it is possible that the relation may be asymmetric. We
have averaged the pairwise distances to be symmetric. The pairwise compression
distances, computed using a context model, are shown in table 7.

The pairwise compression distances can be used to induce a phylogenetic tree that
shows the relations of the languages. We used UPGMA algorithm [Mur84] to draw
the tree. UPGMA (Unweighted Pair Group Method with Arithmetic mean) is a
hierarchical clustering method that is used for the creation of phylogenetic trees. In
the construction, the algorithm uses the distance matrix. Basically, at each step,
UPGMA combines two nearest clusters to form a higher-level cluster. Once a cluster
consists from more than one members, the distance is computed by taking the mean
distance between all elements of each cluster. If there are clusters Q and R, the
mean distance between these clusters is:

1

|Q| · |R|
∑
q∈Q

∑
r∈R

d(q, r) (21)
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Figure 10: Finno-Ugric tree induced by NCD.

The UPGMA algorithm is straight-forward to use, but it is not an ideal algorithm
in many cases. A tree constructed using the UPGMA is shown in figure 10, and it is
using the precomputed distances of the table 7. The UPGMA-tree can be compared
to a tree built by linguists [Ant89] in figure 1. The reconstruction captures the
relations of closely related languages very well, but is no that successful to model
the more distant relations. One another option to consider for tree construction is
for instance Cilibrasi’s CompLearn Algorithm [CiV11].

5.3 Quality of Alignments

Even though we can not evaluate the goodness of the obtained alignments quan-
titatively, it is possible to perform a qualitative evaluation. The approach here is
to check what kind of recurrent sound correspondences the model of interest can
find and compare them to well-known correspondences that can be studied from the
linguistic handbooks, e.g., [Lyt73, Sin97].

In figure 11 there is a two-dimensional global count matrix that models the alignment
of Estonian with Finnish. This example matrix is produced by the two-part code
model, as described in chapter 4.4 and later referred in this chapter as 1x1 model.
The row labels of the matrix are from the Estonian alphabet, column labels from
the Finnish alphabet. The count matrix describes the complete final alignment. In
this visualization, the actual alignment count between corresponding symbol pair in
the corpus is replaced with a ball of which size is proportional to this number.
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Figure 11: Alignment matrix for Finnish-Estonian data using the 1x1 model.

Finnish and Estonian are very closely related languages, so the alphabets are also
very close to each other. However, it is important to notice that the model we use
knows nothing about the symbols themselves. We could be aligning just numbers
or letters from completely different alphabets, e.g. Cyrillic and Latin. Even though
Finnish a looks similar to Estonian a for us in this example that is not the case for the
model since it codes the source and target level symbols separately, independently
from each other. Given this, model finds alignment from which it is easy to see that
there is a very simple kind of correspondence between similar looking symbols, e.g.
Finnish a and Estonian a.

As a consequence, there is a clear emphasis of the regular alignments on the diagonal
of the matrix. In general, the clearer the diagonal appears, the less ambiguous are the
alignments and the lower the entropy of the matrix is. In other words, we consider
the quality of alignments to be higher the lower the entropy in the alignment matrix
is. If there exists many ambiguous alignments, we hope to find an explanation, a
rule that describes them as completely as possible.

From the example of figure 11 can be seen that there are regular deletions of Finnish
vowels a, i and ä. This phenomenon is due to fact that word-final vowels are often
deleted in Finnish if compared to Estonian. Another example is Estonian vowel
o, which sometimes corresponds to Finnish vowel o, sometimes to Finnish u. This
correspondence cannot be explained by this model only, we need a more complex
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Figure 12: Alignment matrix for Hungarian-Finnish data using the 1x1 model.

rule to infer it.

In figure 12 is shown an alignment matrix for a language pair Hungarian-Finnish.
These two languages are very distant relatives, and this fact can also be seen from the
matrix visualization. Compared to figure 11, there is still a diagonal of strong sound
correspondences, but much more ambiguous events that are difficult to explain with
the help of the matrix only.

It is also possible to visualize the 3-dimensional alignment matrix, to learn more
about the sound correspondences inside the language family. In figure 13 is shown
an alignment matrix that is a result of aligning Mordvin, Estonian and Finnish
languages simultaneously. This view gives more information about the rules in
general.

5.4 Rules of Correspondence

The simple correspondences described in previous section 5.3 are interesting as a
sanity check of the performance of our methods, but it is even more interesting
to model more complex rules of correspondence and compare them to manually
found rules, which can be expressed in terms of two-level morphology by Kimmo
Koskenniemi [Kos83]. Koskenniemi’s two-level model consists of two components,
which are a rules component and a lexical component. The rules component contains
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Figure 13: 3-D alignment matrix for Mordvin-Estonian-Finnish data.

phonological rules which can be represented as finite state devices. The lexical
component lists items of lexicon, stems and morphemes, in their base form and
encodes constraints for the morphological alternation. The phonological rules are
the ones we are more interested in this work.

For example, we can use Koskenniemi’s formalism to write a phonological rule p⇒
_q. This rule can be read as “it is not the case that something ending in p is
not followed by something starting with q” and ”p is followed by q“ [KaB05]. The
1x1 models are too simple to capture this kind of phenomenon, since they give us
only one-to-one sound correspondences. Our more complex models, the 2x2 model
and context model, are already able to capture these rules. When comparing the
goodness of the models, we can use as a evaluation criteria the ability of a model to
discover rules and also the complexity of those rules.

In principle, 2x2 model is able to discover all one-to-one, one-to-two, two-to-one
and two-to-two rules. An example of two-to-two rule which cannot be described by
the 1x1 model is a diphthong rule between Finnish and Estonian. According to it,
Finnish diphthongs uo, yö and ie correspond to Estonian long vowels oo, öö and ee.
Examples of typical rules found by the 2x2 model are shown in table 8.

The context model can discover even more complex rules which the 2x2 model can
not describe. An example of this kind of rule is a phenomenon (also seen in the
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Rule type Finnish Estonian Description
1-to-1 a a A simple correspondence
1-to-2 . as Word ending as is not typical in Finnish
2-to-1 a$ $ At the end of a word Finnish a gets deleted
2-to-2 uo oo A diphthong is converted to a long vowel

Table 8: Examples of frequent rules of correspondence found by 2x2 model from
alignment of Finnish and Estonian.

matrix of figure 11) where Finnish t corresponds to both Estonian t and d, Finnish
k to Estonian k and g as well as Finnish p to Estonian p and b. Consonants t, k
and p are voiceless, whereas d, g and b are voiced, all these consonants are plosives.
This rule can be expressed in Koskenniemi’s terminology in the following way:

Voicing of word-medial plosives in Estonian: Voiceless plosive may
change to voiced in Estonian, if not word-initial.

The rules found by context model are stored in the structure of the decision trees
of the features. Thus, in order to find a rule that describes how the voiced feature
behaves, we have to study the structure of the VOICED feature trees. The context
model learns this rule and it can be found from a tree that is a TARGET level tree for
VOICED consonant feature. The tree that contains this information is illustrated in
figure 14. For clarity, in this example Finnish is the source level and Estonian the
target level language, hence the the tree in the figure is for Estonian language.

The VOICED feature has two possible values, voiced and voiceless, which are denoted
with + and −, respectively. In the count matrix of the root node (a.) in figure 14
is shown the distribution of voiced and voiceless consonants in the Estonian data.
These values are distributed quite equally, there are slightly more voiceless than
voiced consonants (821 vs. 801).

The inner nodes are circled with green color (nodes a., b., f. and j.) and the leaf
nodes with blue (e. and g.) or with red (c., d., h. and i.). Note that the children
of the node (j.) are not shown in this figure, since they are irrelevant in the task
of finding the voicing rule. Each inner node of the tree is split according to the the
best candidate to reduce the entropy of the count matrix, as described in section 4.7.
In the root node the best splitting candidate is (SOURCE, ITSELF, VOICED) and it
can be read as: ”What is the value of the VOICED feature in the source language at
this position?“ There are three possible answers to this question, since the Finnish
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Figure 14: A context aware tree that shows the rule for medial voicing of plosives
in Estonian.

symbol in the same position may be:

• a voiceless consonant(−),

• a voiced consonant(+)

• or a symbol of wrong type (6=), i.e. a vowel or a dot.

The blue color reflects high entropy in the count matrix, red color low entropy. An
example of zero entropy matrix is in (d.) node. In this node we can be sure that
the Estonian consonant we are coding is voiceless. The path to this node gives us a
rule: ”If the Finnish consonant at this position is voiceless and the previous Estonian
symbol was a voiceless consonant, this symbol is certainly going to be a voiceless
consonant too“.

The nature of the rule of voicing of word-medial plosives indicates that we will not
find it from low entropy nodes. We have two possibilities to find this rule, the nodes
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(e.) and (g.), where it may be so that the Estonian consonant is voiced. The rules
that lead to these nodes say that voicing may occur if one of the following paths is
satisfied:

Node e. The Finnish consonant at this position is voiceless and the previous Es-
tonian symbol was a voiced consonant.

Node g. The Finnish consonant at this position is voiceless and the previous Esto-
nian symbol was not a consonant (or the beginning of a word) and the Finnish
consonant at this position was a plosive P.

Table 9 gives for each leaf node of the tree of figure 14 an example word pair that
fulfills the conditions of the corresponding paths. For instance, a word pair for the
node (d.) in the table is koppa - kopp. While coding the last Estonian consonant
(which is p in this case), the fact that it is voiceless is determined by its context in the
alignment: the Finnish symbol at the same position on the source level is voiceless
and the second last Estonian symbol is also voiceless. In order to determine other
feature values, we naturally have to discover all the target level trees.

Node Word pair The VOICED value FIN:EST

c # k a . s a voiceless:voiceless# k a d s a

d # k o p p a voiceless:voiceless
# k o p p .

e # s a m p i voiceless:voiced
# s a m b .

g # i k ä voiceless:voiced# i g a

h # a s i a voiceless:voiceless# a s i .

i # a r v o voiced:voiced# a r . u

Table 9: Examples of the voicing behavior of some Estonian consonants in the
aligned word pairs. There is always exactly one leaf node in which the corresponding
rule holds. The visualization of this TARGET level VOICED tree is in figure 14. Estonian
consonant that is in focus is bold, the symbols that the rule utilizes are underlined.
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The previous examples give an idea about the nature of the complex phonological
rules that can be captured by the context model. This far we have studied rules
of correspondences discovered by the context model between Finnish and Estonian,
Finnish and Hungarian and Komi and Udmurt. The fact that the interpretation of
the rules is very manual work, slows down the evaluation of them.

One problem we have faced with the rules learned by context model is the existence
of ”empty rules” that have learned trivial things about the sounds themselves. These
rules do not give any new information for us but make the trees more complicated
and harm the study of them. An example is in figure 15. The tree a is a TARGET

level tree for the SECONDARY feature from Finnish-Hungarian alignment. The possible
values of the SECONDARY feature are: none n, palatalized ’, labialized w and aspirated
h. The split is in the root node is conditioned with a query: “Is the value of the
feature PLACE OF ARTICULATION dental d in this consonant?” Since all Hungarian
consonants that are palatalized are also dental, we do not gain much from this rule.
In any case this rule brings down the entropy as well as the code length. A question
that needs to be answered is that if we could eliminate these rules, would they be
replaced by more useful rules that still reduce the entropy.

TARGET, ITSELF, PLACE d

¬ dd

562 48
n '

  0 0
w h

270 48
n '

  0  0
w h

292  0
n '

  0  0
w h

Figure 15: An empty rule in TARGET level tree for the SECONDARY feature in Finnish-
Hungarian alignment.
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5.5 Imputation

Imputation in statistics is a practice of substitution of values of missing data points.
It helps to solve the missing-data problem. We use the term imputation in a slightly
different purpose. The idea is to learn a model and predict (impute) unseen data with
the help of the model. For instance, we could learn a model for aligning Estonian
with Mordvin, by leaving out the word pair we are going to use in imputation. After
the learning is finished, the model is given the unseen Estonian word, and the task
of the model is to guess the corresponding Mordvin cognate. This procedure can be
repeated for the full data set.

In the evaluation phase, we can compute the distance of the imputed words from the
expected ones, and compare the performance of the models this way. Imputation
is again an indirect way to evaluate the models, but it is objective and gives direct
feedback about the strengths and the weaknesses of different models. The general
imputation procedure consists of three steps:

1. The first step is the generation of the imputed word. For a given source word
s = s1 . . . sn where si ∈ S, the task is to impute a target word t = t1 . . . tn

where ti ∈ T.. The imputed word is the one that aligns with the source word
with the lowest cost given the model used. The implementation of this step
varies from model to model. The baseline imputation is described in section
5.5.1, 2x2 imputation in section 5.5.2, 3-dimensional imputation in section
5.5.3 and the context imputation in section 5.5.4.

2. The next task is to evaluate the goodness of the imputed word. We compute
edit distance between the imputed and expected word. The edit distance can
be computed on symbol or feature level.

3. Finally the imputation edit distance can be normalized and averaged over all
words and we can compare the scores of different language pairs and also the
scores between models.

5.5.1 Imputation for 1x1 Models

The imputation algorithm for the models that perform only 1x1 symbol alignments
is very simple. Since these models know nothing about the context, each symbol si
of the source word s = s1 . . . sn can be processed separately. Given a source symbol
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si ∈ S, the imputed target symbol tj ∈ T. is determined by the event cost in the
model learned as shown in equation 22:

tj = arg min
tj

L(si : tj) (22)

The event cost is computed as in equation 11. In principle, the 1x1 imputation is
simply a mapping from source alphabet to the target alphabet.

The imputation of 1x1 symbol alignments can be illustrated with a look-up-table, as
shown in figure 16. In this example the task is to impute a word in Estonian target
alphabet T. for a Finnish word kylmä. Starting from the first symbol in the source
word (k), its event count with each Estonian symbol in the global count matrix is
checked. As seen from the global count matrix of figure 11, the Finnish k is most
frequently aligned with target symbol k ∈ T.. The task is repeated until we have
found the lowest cost alignment for all the symbols in source word. According to the
1x1 symbol imputation algorithm, a deletion of source symbols is possible, but the
insertion of target symbols is not. The resulting imputed word in Estonian alphabet
is külmä, whereas the real Estonian cognate is külm.

. a b d e g h i j k l m n o p r s t u v z ä õ ö ü

k x
y x
l x
m x
ä x

Figure 16: Imputing Estonian from Finnish with a help of the 1x1 models.

5.5.2 Imputation for 2x2 Model

The imputation using 2x2 model is a bit more complicated, since the task is to
find lowest cost mappings to target alphabet for all substrings of length 1 or 2 in
the source word and find the lowest cost path through them. The solution to this
problem is a dynamic programming approach.

The algorithm can be illustrated using the dynamic programming matrix as shown in
figure 17. The example is designed for imputing Estonian counterpart for a Finnish
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Figure 17: Dynamic programming matrix for imputing Estonian counterpart for a
Finnish word kylmä.

word kylmä, given the learned 2x2 model. Each column i in the matrix stores the
optimal path up to symbol si of the source word, and to each column leads 2 paths
(except to column 1 is only possible to arrive from the beginning of the word). In
order to end up to column i, the options are to read off a single source symbol si
or a symbol sequence si−1si. The possible symbol alignments are: (si : .), (si : t),
(si : tt′), (si−1si : .), (si−1si : t) or (si−1si : tt′), where t and t′ are symbols of the
target alphabet. The symbol alignment that minimizes the event cost is chosen,
similarly to the equation 22, and attached to the lowest cost path.

After the path to column i is found, it is possible continue to the next column and
repeat the procedure until the complete word is read off. The lowest cost path at
the end of the word links to the resulting imputed word.

For instance, if we look at the symbol s2 = k in the source word, there are two
possibilities to arrive to this column: from the beginning of the word or from column
1. The complete path in the first case is alignment sequence (ˆ : ˆ) + (k : g) and
the alternative path is to arrive directly, by aligning (ˆk : ˆk). For this symbol,
the cost of the latter path is lower. The complete path through the source word is
drawn using red arrows, and it consists of alignments (ˆk : ˆk), (y : ü), (lm : lm)

and (ä$ : $). The imputed word in Estonian alphabet is then külm, which happens
to be exactly the same as the real Estonian cognate.
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5.5.3 3-Dimensional Imputation

We use the 3-dimensional model to align cognates from languages S, T and V . The
model can be used to impute words in third language, V , either with help of both
words from S and T or just with one of them. For the incomplete examples (only one
cognate from S or T is known), the imputation algorithm utilizes the corresponding
marginal count matrix, GSV or GTV and is equal to the 2-dimensional case, as
described in section 5.5.1.

For the complete examples, the imputation is done using dynamic programming.
The 3-dimensional model learns only 1-to-1 sound correspondences, but the ap-
proach used with 1x1 models cannot be directly utilized, since the alignment of
cognates s and t from languages S and T is not known. The 3-dimensional impu-
tation algorithm simultaneously aligns the known word pair and imputes the third
language. We follow the dynamic programming approach used in the 1x1 model
building, as described in section 4.3.1.

The imputation is included in each step in which the cost of adding a new event into
the best path that far is computed. For 2-dimensional models, the cost of adding an
event was computed as in equation 8. In 3-dimensional imputation, the best path
is searched only in 2 dimensions, but the event cost is computed in 3 dimensions.
Equation 23 gives the cost of path in cell (si, tj) of the dynamic programming matrix.
The imputed symbol vk is chosen to minimize the event cost L3D.

C(si, tj) = min


C(si, tj−1) + mink L3D(. : tj : vk)

C(si−1, tj) + mink L3D(si : . : vk)

C(si−1, tj−1) + mink L3D(si : tj : vk)

(23)

The imputed word for language V is attached to the optimal alignment of s and t.
It can be backtracked from the last cell of the matrix, by following the lowest cost
path to the initial cell.

5.5.4 Context Imputation

The context imputation algorithm is using a context model to predict a target
word t = t1 . . . tn where ti ∈ T , given a source word s = s1 . . . sn where si ∈
S. Differently to the previously introduced imputation methods, a straightforward
dynamic programming method cannot be applied, since the cost of an event (s : t)
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cannot be computed independently from previously observed events, it depends on
the context in which the event occurs. As a consequence, the lowest cost path of
alignments up to symbol si in source word is possibly not optimal after seeing symbol
si+1. In principle, all the paths should be carried along until all the symbols of s are
aligned.

The context imputation algorithm is a greedy search heuristics that limits the num-
ber of paths to be considered in the mission of finding the sequence of target symbols
t that align with the source word s with the lowest cost, using the previously learned
context model M. The complete context imputation algorithm is described in al-
gorithm 2.

The context imputation algorithm tries to imitate the process of model learning.
Thus, we have to allow deletions and insertions on both levels. We also have to set
some restrictions to simplify the task. On source side, we allow maximum 3 dots
in a row. Similarly to the restrictions in model building, it is forbidden to align a
dot with a dot and a word boundary symbol can only be aligned with another word
boundary symbol.

The fundamental idea of algorithm 2 is to read off source symbols one by one and at
each positions i to collect B-best ways to impute the target symbols up to symbol
si. The algorithm repeats a procedure: add the next source symbol si (or dot) and
find the lowest cost target symbol t ∈ T. to align it with. There are up to B different
contexts, in which the symbol alignment (si : t) can occur. The cost of each of these
paths has to be computed separately.

The cost of adding a symbol alignment to a single path proceeds as follows. First, the
source and target symbols are split to their feature representations, to determine the
feature trees that are used to encode the event in the model. The contexts queried
by the trees are given by the path of previous symbol alignments, so it is possible
to find the leaf nodes, in which the the distribution of the feature values is stored.
The cost of adding an event ε of type e, is given by equation 24, where c(e) is the
event count of e in the context model and |E| is the number of all event types in
the count matrix of the leaf node. The total cost of symbol alignment (si : t) can
be computed by summing up the event costs in all involved feature trees.
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Algorithm 2 The Context Imputation
Input: Source word s

Context modelM
Number of possible paths B = 100
A list for saving the best alignments so far: AB = [(ˆ : ˆ)]

Output: Imputed word that consist of symbols from the target alphabet T
1: for position j = 0→ |s| do
2: Find the next source symbol sj
3: for all parent alignments (sp : tp) ∈ AB do {add 1st dot}
4: Add (· : t) to the parent alignment and compute the total cost of the

concatenated alignment for all t ∈ T
5: end for
6: Save B best alignments to a list Ad1

7: for all parent alignments (sp : tp) ∈ Ad1 do {add 2nd dot}
8: Add (· : t) to the parent alignment and compute the total cost of the

concatenated alignment for all t ∈ T
9: end for
10: Save B best alignments to a list Ad2

11: for all parent alignments (sp : tp) ∈ Ad2 do {add 3rd dot}
12: Add (· : t) to the parent alignment and compute the total cost of the

concatenated alignment for all t ∈ T
13: end for
14: Save B best alignments to a list Ad3

{The next source symbol sequence sj is one of the following:
sj, ·sj, · · sj or · · ·sj.}

15: for all parent alignments (sp : tp) ∈ AB ∪ Ad1 ∪ Ad2 ∪ Ad3 do {add sj}
16: Add (sj : t) to the parent alignment and compute the total cost of the

concatenated alignment for all t ∈ T.
17: end for
18: Clear AB and save B best alignments to the list AB
19: position j ← j + 1
20: end for
21: Get lowest cost alignment from list AB
22: return The imputed target word, dots removed.

P (ε) =
c(e) + 1∑

e′

c(e′) + |E|

L(ε) = − log2(P (ε)). (24)
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5.5.5 Edit Distance

We use Levenshtein distance to measure the difference between the imputed strings t′

and expected strings t. The metric, also called as edit distance, defines the minimum
number of edits that are needed to transform one string into the other [Lev66]. The
allowed edit operations are insertion, deletion and substitution, all of these also
allowed by our models. Each edit operation has a cost, which is one if we want to
compute the standard edit distance that gives the exact number of edit operations
needed. We also define a feature-wise edit distance, where the feature representation
of the symbols is used in case of a substitution operation. Then the cost is the
proportion of identical features to the total number of features.

We repeat the imputation process for all words in source language that have a cog-
nate in target language and obtain N examples. Then we compute the edit distance
between each imputed word and correct word. If we sum the edit distances and
normalize the sum by the size of the target language data, we get a measure called
normalized edit distance, NED. If the edit distances are computed using feature-wise
edit distance, this measure is called normalized feature-wise edit distance, NFED.

With the help of NED and NFED, we can compare the imputation power of different
methods. In the scatter-plot of figure 18 is shown how the context model performs
in comparison to a simple 1x1 two-part code model. There is shown the NFED
of 10 ∗ 9 language pairs in both models, each symbol refers to one of the source
languages. For most of the language pairs, the context model has a lower NFED.
However, for some far-related languages the context model fails to find a better
imputation result. This could be explained by the lack of data to lead the context
model to learn stronger rules. The NED measure is never optimized directly by the
models. However, there seems to be a correlation between the model cost and the
normalized edit distance, which encourages to develop this evaluation method.

The normalized edit distance can also be used to measure the inter-language dis-
tances. Given a model, we can compute the NED or NFED for all language pairs
in the data. The UPGMA-algorithm (as described in section 5.2) can be used to
cluster the languages based on their edit distances. In figure 19 is a phylogenetic tree
for Finno-Ugric languages, based on the imputation results from context models. If
compared to figure 1, we can see how well the imputation approach can capture the
language distances.
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Figure 18: The comparison of imputation power of models in terms of normalized
feature-wise edit distance. A context model on x-axis, 1x1 two-part code model on
y-axis.

Figure 19: Finno-Ugric tree induced by normalized feature-wise edit distances in
context model.
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6 Conclusions

In this work, we have presented probabilistic models to induct alignment rules for
etymological data. The data consists of cognate sets from Uralic language family,
that is, sets of words that descend from the same origin. We used the data in its
original form and in order to learn more about the sound change, we also defined a
feature-based representation of sounds that is consistent across all the languages of
the family.

All the models introduced in this work relied on the minimum description length
principle. The approach is new in the computational etymology. We used pre-
quential coding approach to encode the alignments of the words and optimized the
models by minimizing the total code length of the data given the model in the spirit
of two-part coding. We presented several models of varying complexity, the 1x1
models to capture simple 1-to-1 sound correspondences between two languages, 2x2
model for correspondences of up to 2 symbols and 3-dimensional model for aligning
3 languages simultaneously. The last model we described was a context model that
learns phonetic rules that are conditioned by the environment of the sounds.

A challenging task was to design ways to test and evaluate the models. There is no
straightforward way to implement the task, since there doesn’t exist a gold standard
in which to compare the alignments produced by our models. Since the basic idea of
MDL is that learning can be viewed as data compression, it made sense to compare
the compression power of the models to judge their goodness. The result was that
our models perform very well in this specific task.

One of the main goals in the development of the models was to learn rules of regular
sound correspondences. We noticed that even the simplest models can learn rules
from the data and the context model captures many environmentally conditioned
correspondences that are well-known in the etymological literature. We also com-
puted the inter-language distances and normalized them to reconstruct the Uralic
language tree, which was not identical to the tree drawn by linguistics, but preserved
most of the relations.

The most ambitious evaluation schema was the imputation in which the models were
used in a supervised way: after learning a model, it was used to predict unseen data.
This approach gave promising results. We computed the normalized edit distances
(NED) between the imputed and real cognates and used these scores to compare
the models and language distances. There seemed to be a strong tendency that
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a lower model cost indicates lower NED, which encourages to further develop the
imputation methods. We also used the NED to induce a phylogenetic language tree
which was already very close to the truth.

The goals of the future research aim both to improve the existing methods as well as
to grow to new directions. The context model is currently only 2-dimensional and it
could be extended to be three- or higher-dimensional. A related task is to develop a
multi-dimensional context imputation algorithm. Multi-dimensional models would
give us more information about the inter-language relations and would restrict the
set of possible rules to be more accurate. The imputation methods can also be
extended towards reconstruction of proto-forms of hypothetical parent languages
which can be found from the internal nodes of the phylogenetic language tree. The
reconstructed proto-forms would be very beneficial in the comparison of far-related
languages and also give new information and support for the language evolution
theories.
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